R/rlOptIC.R

Defines functions rlOptIC

Documented in rlOptIC

###############################################################################
## optimally robust IC for normal location
###############################################################################
rlOptIC <- function(r, mean = 0, sd = 1, bUp = 1000, computeIC = TRUE){
    c0 <- uniroot(function(c0, r){return(r^2*c0 - 2*(dnorm(c0) - c0*pnorm(-c0)))}, 
             lower = 1e-4, upper = bUp, tol = .Machine$double.eps^0.5, r = r)$root

    A1 <- 1/(2*pnorm(c0) - 1)
    b <- sd*A1*c0
    A <- sd^2*A1

    if(computeIC){
        w <- new("HampelWeight")
        clip(w) <- b
        cent(w) <- 0
        stand(w) <- as.matrix(A)
        weight(w) <- getweight(w, neighbor = ContNeighborhood(radius = r), 
                               biastype = symmetricBias(), 
                               normW = NormType())

        modIC <- function(L2Fam, IC, withMakeIC, ...){
            if(is(L2Fam, "L2LocationFamily") && is(distribution(L2Fam), "Norm")){
                CallL2Fam(IC) <- L2Fam@fam.call
                return(IC)
            }else{
                makeIC(IC, L2Fam, ...)
            }
        }

        L2Fam <- substitute(NormLocationFamily(mean = m1, sd = s1), 
                            list(m1 = mean, s1 = sd))
        return(generateIC(neighbor = ContNeighborhood(radius = r), 
                    L2Fam = eval(L2Fam), 
                    res = list(A = as.matrix(A), a = 0, b = b, d = NULL, 
                               risk = list(asMSE = A, asBias = b, asCov = A - r^2*b^2), 
                               info = c("rlOptIC", "optimally robust IC for AL estimators and 'asMSE'"),
                               w = w, biastype = symmetricBias(), normtype = NormType(),
                               modifyIC = modIC)))
    }else{
        return(list(A = A, a = 0, b = b))
    }
}

Try the RobLox package in your browser

Any scripts or data that you put into this service are public.

RobLox documentation built on April 6, 2019, 3:04 a.m.