Nothing
#' Normal power prior with full Bayes by INLA
#'
#' @param x numeric vector of results
#' @param sd standard deviations
#' @param verbose Print messages
#'
#' @return A density function
#' @export
#'
normal.PP.FB.INLA <- function(x, sd, verbose=FALSE ){
n.hist <- length(x)
A<-1
B<-1
prior.function <- function(theta) ifelse(theta < log(1),
log(dbeta(exp(theta),A,B)*exp(theta)),
-theta-10000)
# ifelse(theta < log(1), exp(theta), -theta-10000)
lprec = seq(-100, 10, len=1000)
prior.table = paste(c("table:", cbind(lprec, prior.function(lprec))),
sep = "", collapse = " ")
Y <- matrix(NA,n.hist,n.hist)
diag(Y) <- x
fam <- rep("gaussian", n.hist)
con.fam <- c(rep(list(list(hyper=list(theta=list(prior=prior.table, initial=log(.1) )))), n.hist))
sca <- 1/sd^2
ifb <- inla(Y~1,
data=list(Y=Y),
family=fam,
scale= sca,
control.family = con.fam,
control.inla = list(strategy='laplace', int.strategy='eb'),
verbose=TRUE)
summary(ifb)
g <- function(p,X) ifelse(0<=p&p<=1, f(p),0)
return(ifb)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.