Description Usage Arguments Value Author(s) Examples
Here we consider one fixed rotation of the data and
seek hot spots using a classification tree
1 2 3 4 5 6 7 8 9 10 |
formula |
A formula expression. The left-hand-side (response) should be either a numerical vector when a regression tree will be fitted or a factor, when a classification tree is produced. The right-hand-side should be a series of numeric or factor variables separated by +; there should be no interaction terms. Both . and - are allowed: regression trees can have offset terms. |
rotX |
data, possibly already rotated |
NullClass |
if y is a factor, this is the category used for the background |
minsize |
minimum number of points inside a cluster |
minArea |
minimum area of a cluster, units: lat*lon |
maxArea |
maximum area of a cluster, units: lat*lon |
ORfilter |
filter on minimum and maximum odds ratios (OR) |
TreeAlgorithm |
which tree algorithm to choose |
verbose |
level of verbosity |
... |
further arguments to |
identified clusters (if any)
Markus Loecher
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | #examples to come
data("drugCrimes", envir = environment())
drugCrimes$MATCH = factor(drugCrimes$MATCH)
spot1 = getHotspots(MATCH ~ X+Y,drugCrimes, minArea=20/10^6,maxArea=250/10^6,
ORfilter=list(OR=FALSE,OR1=0.8,OR2=0.1))
suppressWarnings(suppressMessages(library("PBSmapping")))
PBSmapping::plotPolys(spot1[1:5,],density=NULL,xlim=range(drugCrimes$X),ylim=range(drugCrimes$Y),
border="blue",lwd=2)
ranRows=sample(1:nrow(drugCrimes), 5000)
points(Y~X,data=drugCrimes[ranRows,],col=RgoogleMaps::AddAlpha(4-as.numeric(MATCH)),pch=20,cex=0.6)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.