mfa: Multiple Factorial Analysis

Description Usage Arguments Value Author(s) References Examples

Description

performs a multiple factorial analysis, using an object of class ktab.

Usage

1
2
3
4
5
6
7
8
mfa(X, option = c("lambda1", "inertia", "uniform", "internal"), 
    scannf = TRUE, nf = 3)
## S3 method for class 'mfa'
plot(x, xax = 1, yax = 2, option.plot = 1:4, ...) 
## S3 method for class 'mfa'
print(x, ...) 
## S3 method for class 'mfa'
summary(object, ...) 

Arguments

X

K-tables, an object of class ktab

option

a string of characters for the weighting of arrays options :

lambda1

weighting of group k by the inverse of the first eigenvalue of the k analysis

inertia

weighting of group k by the inverse of the total inertia of the array k

uniform

uniform weighting of groups

internal

weighting included in X$tabw

scannf

a logical value indicating whether the eigenvalues bar plot should be displayed

nf

if scannf FALSE, an integer indicating the number of kept axes

x, object

an object of class 'mfa'

xax, yax

the numbers of the x-axis and the y-axis

option.plot

an integer between 1 and 4, otherwise the 4 components of the plot are displayed

...

further arguments passed to or from other methods

Value

Returns a list including :

tab

a data frame with the modified array

rank

a vector of ranks for the analyses

eig

a numeric vector with the all eigenvalues

li

a data frame with the coordinates of rows

TL

a data frame with the factors associated to the rows (indicators of table)

co

a data frame with the coordinates of columns

TC

a data frame with the factors associated to the columns (indicators of table)

blo

a vector indicating the number of variables for each table

lisup

a data frame with the projections of normalized scores of rows for each table

link

a data frame containing the projected inertia and the links between the arrays and the reference array

Author(s)

Daniel Chessel
Anne B Dufour anne-beatrice.dufour@univ-lyon1.fr

References

Escofier, B. and Pagès, J. (1994) Multiple factor analysis (AFMULT package), Computational Statistics and Data Analysis, 18, 121–140.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
data(friday87)
w1 <- data.frame(scale(friday87$fau, scal = FALSE))
w2 <- ktab.data.frame(w1, friday87$fau.blo, 
    tabnames = friday87$tab.names)
mfa1 <- mfa(w2, scann = FALSE)
mfa1
plot(mfa1)

data(escopage)
w <- data.frame(scale(escopage$tab))
w <- ktab.data.frame(w, escopage$blo, tabnames = escopage$tab.names)
plot(mfa(w, scann = FALSE))

Example output

Multiple Factorial Analysis
list of class mfa list of class list
$call: mfa(X = w2, scannf = FALSE)
$nf: 3 axis-components saved

  vector     length mode      content      
1 $tab.names 10     character tab names    
2 $blo       10     numeric   column number
3 $rank      1      numeric   tab rank     
4 $eig       15     numeric   eigen values 
5 $lw        16     numeric   row weights  
6 $tabw      0      NULL      array weights

   data.frame nrow ncol content                        
1  $tab       16   91   modified array                 
2  $li        16   3    row coordinates                
3  $l1        16   3    row normed scores              
4  $co        91   3    column coordinates             
5  $c1        91   3    column normed scores           
6  $lisup     160  3    row coordinates from each table
7  $TL        160  2    factors for li l1              
8  $TC        91   2    factors for co c1              
9  $T4        40   2    factors for T4comp             
10 $T4comp    40   3    component projection           
11 $link      10   3    link array-total               
other elements: NULL

ade4 documentation built on May 31, 2017, 4:06 a.m.

Search within the ade4 package
Search all R packages, documentation and source code