Description Usage Arguments Value Author(s) See Also
mcpCorrect calculates three types of multiple comparison corrections: 'uncorrected', 'bonferroni', and 'False Discovery Rate (FDR)'. mcpCorrect assumes the data are t-values.
1 2 | mcpCorrect(fmridata, type = c("uncorrected", "bonferroni", "FDR"),
alpha = 0.05, q = 0.05, cv = 1, df = 100, sig.steps = 1, adj.n = T)
|
fmridata |
An object of class ".fmri.data" (see |
type |
Type of correction ( |
alpha |
Nominal alpha level. |
q |
q parameter for FDR. |
cv |
Cv parameter for FDR. |
df |
Degrees of freedom of the t-values. |
sig.steps |
Number of steps to divide p-values in (for visualization). |
adj.n |
Use only brain voxels when correcting? |
Returns two object of class "fmri.data", one with suprathreshold voxels masked, one with only sigificant voxels used for overlay images.
Wouter D. Weeda - w.d.weeda@gmail.com
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.