mcpCorrect: Calculate Multiple Comparison Corrections

Description Usage Arguments Value Author(s) See Also

Description

mcpCorrect calculates three types of multiple comparison corrections: 'uncorrected', 'bonferroni', and 'False Discovery Rate (FDR)'. mcpCorrect assumes the data are t-values.

Usage

1
2
mcpCorrect(fmridata, type = c("uncorrected", "bonferroni", "FDR"), 
 alpha = 0.05, q = 0.05, cv = 1, df = 100, sig.steps = 1, adj.n = T)

Arguments

fmridata

An object of class ".fmri.data" (see fmri.data).

type

Type of correction ('uncorrected', 'bonferroni', 'FDR')

alpha

Nominal alpha level.

q

q parameter for FDR.

cv

Cv parameter for FDR.

df

Degrees of freedom of the t-values.

sig.steps

Number of steps to divide p-values in (for visualization).

adj.n

Use only brain voxels when correcting?

Value

Returns two object of class "fmri.data", one with suprathreshold voxels masked, one with only sigificant voxels used for overlay images.

Author(s)

Wouter D. Weeda - w.d.weeda@gmail.com

See Also

fmri.data


arf3DS4 documentation built on May 2, 2019, 5:16 p.m.