These models are included in the package via wrappers for train. Custom models can also be created. See the URL below.
Bagged CART (method = 'treebag')
For classification and regression using packages ipred and plyr with no tuning parameters
Bagged Flexible Discriminant Analysis (method = 'bagFDA')
For classification using packages earth and mda with tuning parameters:
Product Degree (degree)
Number of Terms (nprune)
Bagged Logic Regression (method = 'logicBag')
For classification and regression using package logicFS with tuning parameters:
Maximum Number of Leaves (nleaves)
Number of Trees (ntrees)
Bagged MARS (method = 'bagEarth')
For classification and regression using package earth with tuning parameters:
Number of Terms (nprune)
Product Degree (degree)
Bagged Model (method = 'bag')
For classification and regression using package caret with tuning parameters:
Number of Randomly Selected Predictors (vars)
Bayesian Generalized Linear Model (method = 'bayesglm')
For classification and regression using package arm with no tuning parameters
Bayesian Regularized Neural Networks (method = 'brnn')
For regression using package brnn with tuning parameters:
Number of Neurons (neurons)
Boosted Classification Trees (method = 'ada')
For classification using package ada with tuning parameters:
Number of Trees (iter)
Max Tree Depth (maxdepth)
Learning Rate (nu)
Boosted Generalized Additive Model (method = 'gamboost')
For classification and regression using package mboost with tuning parameters:
Number of Boosting Iterations (mstop)
AIC Prune? (prune)
Boosted Generalized Linear Model (method = 'glmboost')
For classification and regression using package mboost with tuning parameters:
Number of Boosting Iterations (mstop)
AIC Prune? (prune)
Boosted Linear Model (method = 'bstLs')
For classification and regression using packages bst and plyr with tuning parameters:
Number of Boosting Iterations (mstop)
Shrinkage (nu)
Boosted Logistic Regression (method = 'LogitBoost')
For classification using package caTools with tuning parameters:
Number of Boosting Iterations (nIter)
Boosted Smoothing Spline (method = 'bstSm')
For classification and regression using packages bst and plyr with tuning parameters:
Number of Boosting Iterations (mstop)
Shrinkage (nu)
Boosted Tree (method = 'blackboost')
For classification and regression using packages party, mboost and plyr with tuning parameters:
Number of Trees (mstop)
Max Tree Depth (maxdepth)
Boosted Tree (method = 'bstTree')
For classification and regression using packages bst and plyr with tuning parameters:
Number of Boosting Iterations (mstop)
Max Tree Depth (maxdepth)
Shrinkage (nu)
C4.5-like Trees (method = 'J48')
For classification using package RWeka with tuning parameters:
Confidence Threshold (C)
C5.0 (method = 'C5.0')
For classification using packages C50 and plyr with tuning parameters:
Number of Boosting Iterations (trials)
Model Type (model)
Winnow (winnow)
CART (method = 'rpart')
For classification and regression using package rpart with tuning parameters:
Complexity Parameter (cp)
CART (method = 'rpart2')
For classification and regression using package rpart with tuning parameters:
Max Tree Depth (maxdepth)
Conditional Inference Random Forest (method = 'cforest')
For classification and regression using package party with tuning parameters:
Number of Randomly Selected Predictors (mtry)
Conditional Inference Tree (method = 'ctree')
For classification and regression using package party with tuning parameters:
1 - P-Value Threshold (mincriterion)
Conditional Inference Tree (method = 'ctree2')
For classification and regression using package party with tuning parameters:
Max Tree Depth (maxdepth)
Cost-Sensitive C5.0 (method = 'C5.0Cost')
For classification using packages C50 and plyr with tuning parameters:
Number of Boosting Iterations (trials)
Model Type (model)
Winnow (winnow)
Cost (cost)
Cost-Sensitive CART (method = 'rpartCost')
For classification using package rpart with tuning parameters:
Complexity Parameter (cp)
Cost (Cost)
Cubist (method = 'cubist')
For regression using package Cubist with tuning parameters:
Number of Committees (committees)
Number of Instances (neighbors)
Elasticnet (method = 'enet')
For regression using package elasticnet with tuning parameters:
Fraction of Full Solution (fraction)
Weight Decay (lambda)
Extreme Learning Machine (method = 'elm')
For classification and regression using package elmNN with tuning parameters:
Number of Hidden Units (nhid)
Activation Function (actfun)
Factor-Based Linear Discriminant Analysis (method = 'RFlda')
For classification using package HiDimDA with tuning parameters:
Number of Factors (q)
Flexible Discriminant Analysis (method = 'fda')
For classification using packages earth and mda with tuning parameters:
Product Degree (degree)
Number of Terms (nprune)
Gaussian Process (method = 'gaussprLinear')
For classification and regression using package kernlab with no tuning parameters
Gaussian Process with Polynomial Kernel (method = 'gaussprPoly')
For classification and regression using package kernlab with tuning parameters:
Polynomial Degree (degree)
Scale (scale)
Gaussian Process with Radial Basis Function Kernel (method = 'gaussprRadial')
For classification and regression using package kernlab with tuning parameters:
Sigma (sigma)
Generalized Additive Model using LOESS (method = 'gamLoess')
For classification and regression using package gam with tuning parameters:
Span (span)
Degree (degree)
Generalized Additive Model using Splines (method = 'gam')
For classification and regression using package mgcv with tuning parameters:
Feature Selection (select)
Method (method)
Generalized Additive Model using Splines (method = 'gamSpline')
For classification and regression using package gam with tuning parameters:
Degrees of Freedom (df)
Generalized Linear Model (method = 'glm')
For classification and regression with no tuning parameters
Generalized Linear Model with Stepwise Feature Selection (method = 'glmStepAIC')
For classification and regression using package MASS with no tuning parameters
Generalized Partial Least Squares (method = 'gpls')
For classification using package gpls with tuning parameters:
Number of Components (K.prov)
glmnet (method = 'glmnet')
For classification and regression using package glmnet with tuning parameters:
Mixing Percentage (alpha)
Regularization Parameter (lambda)
Greedy Prototype Selection (method = 'protoclass')
For classification using packages proxy and protoclass with tuning parameters:
Ball Size (eps)
Distance Order (Minkowski)
Heteroscedastic Discriminant Analysis (method = 'hda')
For classification using package hda with tuning parameters:
Gamma (gamma)
Lambda (lambda)
Dimension of the Discriminative Subspace (newdim)
High Dimensional Discriminant Analysis (method = 'hdda')
For classification using package HDclassif with tuning parameters:
Threshold (threshold)
Model Type (model)
Independent Component Regression (method = 'icr')
For regression using package fastICA with tuning parameters:
Number of Components (n.comp)
k-Nearest Neighbors (method = 'kknn')
For classification and regression using package kknn with tuning parameters:
Max. Number of Neighbors (kmax)
Distance (distance)
Kernel (kernel)
k-Nearest Neighbors (method = 'knn')
For classification and regression with tuning parameters:
Number of Neighbors (k)
Learning Vector Quantization (method = 'lvq')
For classification using package class with tuning parameters:
Codebook Size (size)
Number of Prototypes (k)
Least Angle Regression (method = 'lars')
For regression using package lars with tuning parameters:
Fraction (fraction)
Least Angle Regression (method = 'lars2')
For regression using package lars with tuning parameters:
Number of Steps (step)
Least Squares Support Vector Machine (method = 'lssvmLinear')
For classification using package kernlab with no tuning parameters
Least Squares Support Vector Machine with Polynomial Kernel (method = 'lssvmPoly')
For classification using package kernlab with tuning parameters:
Polynomial Degree (degree)
Scale (scale)
Least Squares Support Vector Machine with Radial Basis Function Kernel (method = 'lssvmRadial')
For classification using package kernlab with tuning parameters:
Sigma (sigma)
Linear Discriminant Analysis (method = 'lda')
For classification using package MASS with no tuning parameters
Linear Discriminant Analysis (method = 'lda2')
For classification using package MASS with tuning parameters:
Number of Discriminant Functions (dimen)
Linear Discriminant Analysis with Stepwise Feature Selection (method = 'stepLDA')
For classification using packages klaR and MASS with tuning parameters:
Maximum Number of Variables (maxvar)
Search Direction (direction)
Linear Regression (method = 'lm')
For regression with no tuning parameters
Linear Regression with Backwards Selection (method = 'leapBackward')
For regression using package leaps with tuning parameters:
Maximum Number of Predictors (nvmax)
Linear Regression with Forward Selection (method = 'leapForward')
For regression using package leaps with tuning parameters:
Maximum Number of Predictors (nvmax)
Linear Regression with Stepwise Selection (method = 'leapSeq')
For regression using package leaps with tuning parameters:
Maximum Number of Predictors (nvmax)
Linear Regression with Stepwise Selection (method = 'lmStepAIC')
For regression using package MASS with no tuning parameters
Logic Regression (method = 'logreg')
For classification and regression using package LogicReg with tuning parameters:
Maximum Number of Leaves (treesize)
Number of Trees (ntrees)
Logistic Model Trees (method = 'LMT')
For classification using package RWeka with tuning parameters:
Number of Iteratons (iter)
Maximum Uncertainty Linear Discriminant Analysis (method = 'Mlda')
For classification using package HiDimDA with no tuning parameters
Mixture Discriminant Analysis (method = 'mda')
For classification using package mda with tuning parameters:
Number of Subclasses Per Class (subclasses)
Model Averaged Neural Network (method = 'avNNet')
For classification and regression using package nnet with tuning parameters:
Number of Hidden Units (size)
Weight Decay (decay)
Bagging (bag)
Model Rules (method = 'M5Rules')
For regression using package RWeka with tuning parameters:
Pruned (pruned)
Smoothed (smoothed)
Model Tree (method = 'M5')
For regression using package RWeka with tuning parameters:
Pruned (pruned)
Smoothed (smoothed)
Rules (rules)
Multi-Layer Perceptron (method = 'mlp')
For classification and regression using package RSNNS with tuning parameters:
Number of Hidden Units (size)
Multi-Layer Perceptron (method = 'mlpWeightDecay')
For classification and regression using package RSNNS with tuning parameters:
Number of Hidden Units (size)
Weight Decay (decay)
Multivariate Adaptive Regression Spline (method = 'earth')
For classification and regression using package earth with tuning parameters:
Number of Terms (nprune)
Product Degree (degree)
Multivariate Adaptive Regression Splines (method = 'gcvEarth')
For classification and regression using package earth with tuning parameters:
Product Degree (degree)
Naive Bayes (method = 'nb')
For classification using package klaR with tuning parameters:
Laplace Correction (fL)
Distribution Type (usekernel)
Nearest Shrunken Centroids (method = 'pam')
For classification using package pamr with tuning parameters:
Shrinkage Threshold (threshold)
Neural Network (method = 'neuralnet')
For regression using package neuralnet with tuning parameters:
Number of Hidden Units in Layer 1 (layer1)
Number of Hidden Units in Layer 2 (layer2)
Number of Hidden Units in Layer 3 (layer3)
Neural Network (method = 'nnet')
For classification and regression using package nnet with tuning parameters:
Number of Hidden Units (size)
Weight Decay (decay)
Neural Networks with Feature Extraction (method = 'pcaNNet')
For classification and regression using package nnet with tuning parameters:
Number of Hidden Units (size)
Weight Decay (decay)
Oblique Random Forest (method = 'ORFlog')
For classification using package obliqueRF with tuning parameters:
Number of Randomly Selected Predictors (mtry)
Oblique Random Forest (method = 'ORFpls')
For classification using package obliqueRF with tuning parameters:
Number of Randomly Selected Predictors (mtry)
Oblique Random Forest (method = 'ORFridge')
For classification using package obliqueRF with tuning parameters:
Number of Randomly Selected Predictors (mtry)
Oblique Random Forest (method = 'ORFsvm')
For classification using package obliqueRF with tuning parameters:
Number of Randomly Selected Predictors (mtry)
Oblique Trees (method = 'oblique.tree')
For classification using package oblique.tree with tuning parameters:
Oblique Splits (oblique.splits)
Variable Selection Method (variable.selection)
Parallel Random Forest (method = 'parRF')
For classification and regression using package randomForest with tuning parameters:
Number of Randomly Selected Predictors (mtry)
partDSA (method = 'partDSA')
For classification and regression using package partDSA with tuning parameters:
Number of Terminal Partitions (cut.off.growth)
Minimum Percent Difference (MPD)
Partial Least Squares (method = 'kernelpls')
For classification and regression using package pls with tuning parameters:
Number of Components (ncomp)
Partial Least Squares (method = 'pls')
For classification and regression using package pls with tuning parameters:
Number of Components (ncomp)
Partial Least Squares (method = 'simpls')
For classification and regression using package pls with tuning parameters:
Number of Components (ncomp)
Partial Least Squares (method = 'widekernelpls')
For classification and regression using package pls with tuning parameters:
Number of Components (ncomp)
Penalized Discriminant Analysis (method = 'pda')
For classification using package mda with tuning parameters:
Shrinkage Penalty Coefficient (lambda)
Penalized Discriminant Analysis (method = 'pda2')
For classification using package mda with tuning parameters:
Degrees of Freedom (df)
Penalized Linear Discriminant Analysis (method = 'PenalizedLDA')
For classification using packages penalizedLDA and plyr with tuning parameters:
L1 Penalty (lambda)
Number of Discriminant Functions (K)
Penalized Linear Regression (method = 'penalized')
For regression using package penalized with tuning parameters:
L1 Penalty (lambda1)
L2 Penalty (lambda2)
Penalized Logistic Regression (method = 'plr')
For classification using package stepPlr with tuning parameters:
L2 Penalty (lambda)
Complexity Parameter (cp)
Penalized Multinomial Regression (method = 'multinom')
For classification using package nnet with tuning parameters:
Weight Decay (decay)
Polynomial Kernel Regularized Least Squares (method = 'krlsPoly')
For regression using package KRLS with tuning parameters:
Regularization Parameter (lambda)
Polynomial Degree (degree)
Principal Component Analysis (method = 'pcr')
For regression using package pls with tuning parameters:
Number of Components (ncomp)
Projection Pursuit Regression (method = 'ppr')
For regression with tuning parameters:
Number of Terms (nterms)
Quadratic Discriminant Analysis (method = 'qda')
For classification using package MASS with no tuning parameters
Quadratic Discriminant Analysis with Stepwise Feature Selection (method = 'stepQDA')
For classification using packages klaR and MASS with tuning parameters:
Maximum Number of Variables (maxvar)
Search Direction (direction)
Quantile Random Forest (method = 'qrf')
For regression using package quantregForest with tuning parameters:
Number of Randomly Selected Predictors (mtry)
Quantile Regression Neural Network (method = 'qrnn')
For regression using package qrnn with tuning parameters:
Number of Hidden Units (n.hidden)
Weight Decay (penalty)
Bagged Models? (bag)
Radial Basis Function Kernel Regularized Least Squares (method = 'krlsRadial')
For regression using packages KRLS and kernlab with tuning parameters:
Regularization Parameter (lambda)
Sigma (sigma)
Radial Basis Function Network (method = 'rbf')
For classification using package RSNNS with tuning parameters:
Number of Hidden Units (size)
Radial Basis Function Network (method = 'rbfDDA')
For classification and regression using package RSNNS with tuning parameters:
Activation Limit for Conflicting Classes (negativeThreshold)
Random Ferns (method = 'rFerns')
For classification using package rFerns with tuning parameters:
Fern Depth (depth)
Random Forest (method = 'rf')
For classification and regression using package randomForest with tuning parameters:
Number of Randomly Selected Predictors (mtry)
Random Forest by Randomization (method = 'extraTrees')
For classification and regression using package extraTrees with tuning parameters:
Number of Randomly Selected Predictors (mtry)
Number of Random Cuts (numRandomCuts)
Random Forest with Additional Feature Selection (method = 'Boruta')
For classification and regression using packages Boruta and randomForest with tuning parameters:
Number of Randomly Selected Predictors (mtry)
Random k-Nearest Neighbors (method = 'rknn')
For classification and regression using package rknn with tuning parameters:
Number of Neighbors (k)
Number of Randomly Selected Predictors (mtry)
Random k-Nearest Neighbors with Feature Selection (method = 'rknnBel')
For classification and regression using packages rknn and plyr with tuning parameters:
Number of Neighbors (k)
Number of Randomly Selected Predictors (mtry)
Number of Features Dropped (d)
Regularized Discriminant Analysis (method = 'rda')
For classification using package klaR with tuning parameters:
Gamma (gamma)
Lambda (lambda)
Regularized Random Forest (method = 'RRF')
For classification and regression using packages randomForest and RRF with tuning parameters:
Number of Randomly Selected Predictors (mtry)
Regularization Value (coefReg)
Importance Coefficient (coefImp)
Regularized Random Forest (method = 'RRFglobal')
For classification and regression using package RRF with tuning parameters:
Number of Randomly Selected Predictors (mtry)
Regularization Value (coefReg)
Relaxed Lasso (method = 'relaxo')
For regression using packages relaxo and plyr with tuning parameters:
Penalty Parameter (lambda)
Relaxation Parameter (phi)
Relevance Vector Machines with Linear Kernel (method = 'rvmLinear')
For regression using package kernlab with no tuning parameters
Relevance Vector Machines with Polynomial Kernel (method = 'rvmPoly')
For regression using package kernlab with tuning parameters:
Scale (scale)
Polynomial Degree (degree)
Relevance Vector Machines with Radial Basis Function Kernel (method = 'rvmRadial')
For regression using package kernlab with tuning parameters:
Sigma (sigma)
Ridge Regression (method = 'ridge')
For regression using package elasticnet with tuning parameters:
Weight Decay (lambda)
Ridge Regression with Variable Selection (method = 'foba')
For regression using package foba with tuning parameters:
Number of Variables Retained (k)
L2 Penalty (lambda)
Robust Linear Discriminant Analysis (method = 'Linda')
For classification using package rrcov with no tuning parameters
Robust Linear Model (method = 'rlm')
For regression using package MASS with no tuning parameters
Robust Quadratic Discriminant Analysis (method = 'QdaCov')
For classification using package rrcov with no tuning parameters
Robust Regularized Linear Discriminant Analysis (method = 'rrlda')
For classification using package rrlda with tuning parameters:
Penalty Parameter (lambda)
Robustness Parameter (hp)
Penalty Type (penalty)
Robust SIMCA (method = 'RSimca')
For classification using package rrcovHD with no tuning parameters
ROC-Based Classifier (method = 'rocc')
For classification using package rocc with tuning parameters:
Number of Variables Retained (xgenes)
Rule-Based Classifier (method = 'JRip')
For classification using package RWeka with tuning parameters:
Number of Optimizations (NumOpt)
Rule-Based Classifier (method = 'PART')
For classification using package RWeka with tuning parameters:
Confidence Threshold (threshold)
Confidence Threshold (pruned)
Self-Organizing Map (method = 'bdk')
For classification and regression using package kohonen with tuning parameters:
Row (xdim)
Columns (ydim)
X Weight (xweight)
Topology (topo)
Self-Organizing Maps (method = 'xyf')
For classification and regression using package kohonen with tuning parameters:
Row (xdim)
Columns (ydim)
X Weight (xweight)
Topology (topo)
Shrinkage Discriminant Analysis (method = 'sda')
For classification using package sda with tuning parameters:
Diagonalize (diagonal)
shrinkage (lambda)
SIMCA (method = 'CSimca')
For classification using package rrcovHD with no tuning parameters
Single C5.0 Ruleset (method = 'C5.0Rules')
For classification using package C50 with no tuning parameters
Single C5.0 Tree (method = 'C5.0Tree')
For classification using package C50 with no tuning parameters
Single Rule Classification (method = 'OneR')
For classification using package RWeka with no tuning parameters
Sparse Linear Discriminant Analysis (method = 'sparseLDA')
For classification using package sparseLDA with tuning parameters:
Number of Predictors (NumVars)
Lambda (lambda)
Sparse Mixture Discriminant Analysis (method = 'smda')
For classification using package sparseLDA with tuning parameters:
Number of Predictors (NumVars)
Lambda (lambda)
Number of Subclasses (R)
Sparse Partial Least Squares (method = 'spls')
For classification and regression using package spls with tuning parameters:
Number of Components (K)
Threshold (eta)
Kappa (kappa)
Stabilized Linear Discriminant Analysis (method = 'slda')
For classification using package ipred with no tuning parameters
Stacked AutoEncoder Deep Neural Network (method = 'dnn')
For classification and regression using package deepnet with tuning parameters:
Hidden Layer 1 (layer1)
Hidden Layer 2 (layer2)
Hidden Layer 3 (layer3)
Hidden Dropouts (hidden_dropout)
Visible Dropout (visible_dropout)
Stepwise Diagonal Linear Discriminant Analysis (method = 'sddaLDA')
For classification using package SDDA with no tuning parameters
Stepwise Diagonal Quadratic Discriminant Analysis (method = 'sddaQDA')
For classification using package SDDA with no tuning parameters
Stochastic Gradient Boosting (method = 'gbm')
For classification and regression using packages gbm and plyr with tuning parameters:
Number of Boosting Iterations (n.trees)
Max Tree Depth (interaction.depth)
Shrinkage (shrinkage)
Supervised Principal Component Analysis (method = 'superpc')
For regression using package superpc with tuning parameters:
Threshold (threshold)
Number of Components (n.components)
Support Vector Machines with Class Weights (method = 'svmRadialWeights')
For classification using package kernlab with tuning parameters:
Sigma (sigma)
Cost (C)
Weight (Weight)
Support Vector Machines with Linear Kernel (method = 'svmLinear')
For classification and regression using package kernlab with tuning parameters:
Cost (C)
Support Vector Machines with Polynomial Kernel (method = 'svmPoly')
For classification and regression using package kernlab with tuning parameters:
Polynomial Degree (degree)
Cost (scale)
Scale (C)
Support Vector Machines with Radial Basis Function Kernel (method = 'svmRadial')
For classification and regression using package kernlab with tuning parameters:
Sigma (sigma)
Cost (C)
Support Vector Machines with Radial Basis Function Kernel (method = 'svmRadialCost')
For classification and regression using package kernlab with tuning parameters:
Cost (C)
The lasso (method = 'lasso')
For regression using package elasticnet with tuning parameters:
Fraction of Full Solution (fraction)
Tree Models from Genetic Algorithms (method = 'evtree')
For classification and regression using package evtree with tuning parameters:
Complexity Parameter (alpha)
Tree-Based Ensembles (method = 'nodeHarvest')
For classification and regression using package nodeHarvest with tuning parameters:
Maximum Interaction Depth (maxinter)
Prediction Mode (mode)
Variational Bayesian Multinomial Probit Regression (method = 'vbmpRadial')
For classification using package vbmp with tuning parameters:
Theta Estimated (estimateTheta)
“Using your own model in train” (http://caret.r-forge.r-project.org/custom_models.html)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.