models: A List of Available Models in train

Description References

Description

These models are included in the package via wrappers for train. Custom models can also be created. See the URL below.

Bagged CART (method = 'treebag')

For classification and regression using packages ipred and plyr with no tuning parameters

Bagged Flexible Discriminant Analysis (method = 'bagFDA')

For classification using packages earth and mda with tuning parameters:

Bagged Logic Regression (method = 'logicBag')

For classification and regression using package logicFS with tuning parameters:

Bagged MARS (method = 'bagEarth')

For classification and regression using package earth with tuning parameters:

Bagged Model (method = 'bag')

For classification and regression using package caret with tuning parameters:

Bayesian Generalized Linear Model (method = 'bayesglm')

For classification and regression using package arm with no tuning parameters

Bayesian Regularized Neural Networks (method = 'brnn')

For regression using package brnn with tuning parameters:

Boosted Classification Trees (method = 'ada')

For classification using package ada with tuning parameters:

Boosted Generalized Additive Model (method = 'gamboost')

For classification and regression using package mboost with tuning parameters:

Boosted Generalized Linear Model (method = 'glmboost')

For classification and regression using package mboost with tuning parameters:

Boosted Linear Model (method = 'bstLs')

For classification and regression using packages bst and plyr with tuning parameters:

Boosted Logistic Regression (method = 'LogitBoost')

For classification using package caTools with tuning parameters:

Boosted Smoothing Spline (method = 'bstSm')

For classification and regression using packages bst and plyr with tuning parameters:

Boosted Tree (method = 'blackboost')

For classification and regression using packages party, mboost and plyr with tuning parameters:

Boosted Tree (method = 'bstTree')

For classification and regression using packages bst and plyr with tuning parameters:

C4.5-like Trees (method = 'J48')

For classification using package RWeka with tuning parameters:

C5.0 (method = 'C5.0')

For classification using packages C50 and plyr with tuning parameters:

CART (method = 'rpart')

For classification and regression using package rpart with tuning parameters:

CART (method = 'rpart2')

For classification and regression using package rpart with tuning parameters:

Conditional Inference Random Forest (method = 'cforest')

For classification and regression using package party with tuning parameters:

Conditional Inference Tree (method = 'ctree')

For classification and regression using package party with tuning parameters:

Conditional Inference Tree (method = 'ctree2')

For classification and regression using package party with tuning parameters:

Cost-Sensitive C5.0 (method = 'C5.0Cost')

For classification using packages C50 and plyr with tuning parameters:

Cost-Sensitive CART (method = 'rpartCost')

For classification using package rpart with tuning parameters:

Cubist (method = 'cubist')

For regression using package Cubist with tuning parameters:

Elasticnet (method = 'enet')

For regression using package elasticnet with tuning parameters:

Extreme Learning Machine (method = 'elm')

For classification and regression using package elmNN with tuning parameters:

Factor-Based Linear Discriminant Analysis (method = 'RFlda')

For classification using package HiDimDA with tuning parameters:

Flexible Discriminant Analysis (method = 'fda')

For classification using packages earth and mda with tuning parameters:

Gaussian Process (method = 'gaussprLinear')

For classification and regression using package kernlab with no tuning parameters

Gaussian Process with Polynomial Kernel (method = 'gaussprPoly')

For classification and regression using package kernlab with tuning parameters:

Gaussian Process with Radial Basis Function Kernel (method = 'gaussprRadial')

For classification and regression using package kernlab with tuning parameters:

Generalized Additive Model using LOESS (method = 'gamLoess')

For classification and regression using package gam with tuning parameters:

Generalized Additive Model using Splines (method = 'gam')

For classification and regression using package mgcv with tuning parameters:

Generalized Additive Model using Splines (method = 'gamSpline')

For classification and regression using package gam with tuning parameters:

Generalized Linear Model (method = 'glm')

For classification and regression with no tuning parameters

Generalized Linear Model with Stepwise Feature Selection (method = 'glmStepAIC')

For classification and regression using package MASS with no tuning parameters

Generalized Partial Least Squares (method = 'gpls')

For classification using package gpls with tuning parameters:

glmnet (method = 'glmnet')

For classification and regression using package glmnet with tuning parameters:

Greedy Prototype Selection (method = 'protoclass')

For classification using packages proxy and protoclass with tuning parameters:

Heteroscedastic Discriminant Analysis (method = 'hda')

For classification using package hda with tuning parameters:

High Dimensional Discriminant Analysis (method = 'hdda')

For classification using package HDclassif with tuning parameters:

Independent Component Regression (method = 'icr')

For regression using package fastICA with tuning parameters:

k-Nearest Neighbors (method = 'kknn')

For classification and regression using package kknn with tuning parameters:

k-Nearest Neighbors (method = 'knn')

For classification and regression with tuning parameters:

Learning Vector Quantization (method = 'lvq')

For classification using package class with tuning parameters:

Least Angle Regression (method = 'lars')

For regression using package lars with tuning parameters:

Least Angle Regression (method = 'lars2')

For regression using package lars with tuning parameters:

Least Squares Support Vector Machine (method = 'lssvmLinear')

For classification using package kernlab with no tuning parameters

Least Squares Support Vector Machine with Polynomial Kernel (method = 'lssvmPoly')

For classification using package kernlab with tuning parameters:

Least Squares Support Vector Machine with Radial Basis Function Kernel (method = 'lssvmRadial')

For classification using package kernlab with tuning parameters:

Linear Discriminant Analysis (method = 'lda')

For classification using package MASS with no tuning parameters

Linear Discriminant Analysis (method = 'lda2')

For classification using package MASS with tuning parameters:

Linear Discriminant Analysis with Stepwise Feature Selection (method = 'stepLDA')

For classification using packages klaR and MASS with tuning parameters:

Linear Regression (method = 'lm')

For regression with no tuning parameters

Linear Regression with Backwards Selection (method = 'leapBackward')

For regression using package leaps with tuning parameters:

Linear Regression with Forward Selection (method = 'leapForward')

For regression using package leaps with tuning parameters:

Linear Regression with Stepwise Selection (method = 'leapSeq')

For regression using package leaps with tuning parameters:

Linear Regression with Stepwise Selection (method = 'lmStepAIC')

For regression using package MASS with no tuning parameters

Logic Regression (method = 'logreg')

For classification and regression using package LogicReg with tuning parameters:

Logistic Model Trees (method = 'LMT')

For classification using package RWeka with tuning parameters:

Maximum Uncertainty Linear Discriminant Analysis (method = 'Mlda')

For classification using package HiDimDA with no tuning parameters

Mixture Discriminant Analysis (method = 'mda')

For classification using package mda with tuning parameters:

Model Averaged Neural Network (method = 'avNNet')

For classification and regression using package nnet with tuning parameters:

Model Rules (method = 'M5Rules')

For regression using package RWeka with tuning parameters:

Model Tree (method = 'M5')

For regression using package RWeka with tuning parameters:

Multi-Layer Perceptron (method = 'mlp')

For classification and regression using package RSNNS with tuning parameters:

Multi-Layer Perceptron (method = 'mlpWeightDecay')

For classification and regression using package RSNNS with tuning parameters:

Multivariate Adaptive Regression Spline (method = 'earth')

For classification and regression using package earth with tuning parameters:

Multivariate Adaptive Regression Splines (method = 'gcvEarth')

For classification and regression using package earth with tuning parameters:

Naive Bayes (method = 'nb')

For classification using package klaR with tuning parameters:

Nearest Shrunken Centroids (method = 'pam')

For classification using package pamr with tuning parameters:

Neural Network (method = 'neuralnet')

For regression using package neuralnet with tuning parameters:

Neural Network (method = 'nnet')

For classification and regression using package nnet with tuning parameters:

Neural Networks with Feature Extraction (method = 'pcaNNet')

For classification and regression using package nnet with tuning parameters:

Oblique Random Forest (method = 'ORFlog')

For classification using package obliqueRF with tuning parameters:

Oblique Random Forest (method = 'ORFpls')

For classification using package obliqueRF with tuning parameters:

Oblique Random Forest (method = 'ORFridge')

For classification using package obliqueRF with tuning parameters:

Oblique Random Forest (method = 'ORFsvm')

For classification using package obliqueRF with tuning parameters:

Oblique Trees (method = 'oblique.tree')

For classification using package oblique.tree with tuning parameters:

Parallel Random Forest (method = 'parRF')

For classification and regression using package randomForest with tuning parameters:

partDSA (method = 'partDSA')

For classification and regression using package partDSA with tuning parameters:

Partial Least Squares (method = 'kernelpls')

For classification and regression using package pls with tuning parameters:

Partial Least Squares (method = 'pls')

For classification and regression using package pls with tuning parameters:

Partial Least Squares (method = 'simpls')

For classification and regression using package pls with tuning parameters:

Partial Least Squares (method = 'widekernelpls')

For classification and regression using package pls with tuning parameters:

Penalized Discriminant Analysis (method = 'pda')

For classification using package mda with tuning parameters:

Penalized Discriminant Analysis (method = 'pda2')

For classification using package mda with tuning parameters:

Penalized Linear Discriminant Analysis (method = 'PenalizedLDA')

For classification using packages penalizedLDA and plyr with tuning parameters:

Penalized Linear Regression (method = 'penalized')

For regression using package penalized with tuning parameters:

Penalized Logistic Regression (method = 'plr')

For classification using package stepPlr with tuning parameters:

Penalized Multinomial Regression (method = 'multinom')

For classification using package nnet with tuning parameters:

Polynomial Kernel Regularized Least Squares (method = 'krlsPoly')

For regression using package KRLS with tuning parameters:

Principal Component Analysis (method = 'pcr')

For regression using package pls with tuning parameters:

Projection Pursuit Regression (method = 'ppr')

For regression with tuning parameters:

Quadratic Discriminant Analysis (method = 'qda')

For classification using package MASS with no tuning parameters

Quadratic Discriminant Analysis with Stepwise Feature Selection (method = 'stepQDA')

For classification using packages klaR and MASS with tuning parameters:

Quantile Random Forest (method = 'qrf')

For regression using package quantregForest with tuning parameters:

Quantile Regression Neural Network (method = 'qrnn')

For regression using package qrnn with tuning parameters:

Radial Basis Function Kernel Regularized Least Squares (method = 'krlsRadial')

For regression using packages KRLS and kernlab with tuning parameters:

Radial Basis Function Network (method = 'rbf')

For classification using package RSNNS with tuning parameters:

Radial Basis Function Network (method = 'rbfDDA')

For classification and regression using package RSNNS with tuning parameters:

Random Ferns (method = 'rFerns')

For classification using package rFerns with tuning parameters:

Random Forest (method = 'rf')

For classification and regression using package randomForest with tuning parameters:

Random Forest by Randomization (method = 'extraTrees')

For classification and regression using package extraTrees with tuning parameters:

Random Forest with Additional Feature Selection (method = 'Boruta')

For classification and regression using packages Boruta and randomForest with tuning parameters:

Random k-Nearest Neighbors (method = 'rknn')

For classification and regression using package rknn with tuning parameters:

Random k-Nearest Neighbors with Feature Selection (method = 'rknnBel')

For classification and regression using packages rknn and plyr with tuning parameters:

Regularized Discriminant Analysis (method = 'rda')

For classification using package klaR with tuning parameters:

Regularized Random Forest (method = 'RRF')

For classification and regression using packages randomForest and RRF with tuning parameters:

Regularized Random Forest (method = 'RRFglobal')

For classification and regression using package RRF with tuning parameters:

Relaxed Lasso (method = 'relaxo')

For regression using packages relaxo and plyr with tuning parameters:

Relevance Vector Machines with Linear Kernel (method = 'rvmLinear')

For regression using package kernlab with no tuning parameters

Relevance Vector Machines with Polynomial Kernel (method = 'rvmPoly')

For regression using package kernlab with tuning parameters:

Relevance Vector Machines with Radial Basis Function Kernel (method = 'rvmRadial')

For regression using package kernlab with tuning parameters:

Ridge Regression (method = 'ridge')

For regression using package elasticnet with tuning parameters:

Ridge Regression with Variable Selection (method = 'foba')

For regression using package foba with tuning parameters:

Robust Linear Discriminant Analysis (method = 'Linda')

For classification using package rrcov with no tuning parameters

Robust Linear Model (method = 'rlm')

For regression using package MASS with no tuning parameters

Robust Quadratic Discriminant Analysis (method = 'QdaCov')

For classification using package rrcov with no tuning parameters

Robust Regularized Linear Discriminant Analysis (method = 'rrlda')

For classification using package rrlda with tuning parameters:

Robust SIMCA (method = 'RSimca')

For classification using package rrcovHD with no tuning parameters

ROC-Based Classifier (method = 'rocc')

For classification using package rocc with tuning parameters:

Rule-Based Classifier (method = 'JRip')

For classification using package RWeka with tuning parameters:

Rule-Based Classifier (method = 'PART')

For classification using package RWeka with tuning parameters:

Self-Organizing Map (method = 'bdk')

For classification and regression using package kohonen with tuning parameters:

Self-Organizing Maps (method = 'xyf')

For classification and regression using package kohonen with tuning parameters:

Shrinkage Discriminant Analysis (method = 'sda')

For classification using package sda with tuning parameters:

SIMCA (method = 'CSimca')

For classification using package rrcovHD with no tuning parameters

Single C5.0 Ruleset (method = 'C5.0Rules')

For classification using package C50 with no tuning parameters

Single C5.0 Tree (method = 'C5.0Tree')

For classification using package C50 with no tuning parameters

Single Rule Classification (method = 'OneR')

For classification using package RWeka with no tuning parameters

Sparse Linear Discriminant Analysis (method = 'sparseLDA')

For classification using package sparseLDA with tuning parameters:

Sparse Mixture Discriminant Analysis (method = 'smda')

For classification using package sparseLDA with tuning parameters:

Sparse Partial Least Squares (method = 'spls')

For classification and regression using package spls with tuning parameters:

Stabilized Linear Discriminant Analysis (method = 'slda')

For classification using package ipred with no tuning parameters

Stacked AutoEncoder Deep Neural Network (method = 'dnn')

For classification and regression using package deepnet with tuning parameters:

Stepwise Diagonal Linear Discriminant Analysis (method = 'sddaLDA')

For classification using package SDDA with no tuning parameters

Stepwise Diagonal Quadratic Discriminant Analysis (method = 'sddaQDA')

For classification using package SDDA with no tuning parameters

Stochastic Gradient Boosting (method = 'gbm')

For classification and regression using packages gbm and plyr with tuning parameters:

Supervised Principal Component Analysis (method = 'superpc')

For regression using package superpc with tuning parameters:

Support Vector Machines with Class Weights (method = 'svmRadialWeights')

For classification using package kernlab with tuning parameters:

Support Vector Machines with Linear Kernel (method = 'svmLinear')

For classification and regression using package kernlab with tuning parameters:

Support Vector Machines with Polynomial Kernel (method = 'svmPoly')

For classification and regression using package kernlab with tuning parameters:

Support Vector Machines with Radial Basis Function Kernel (method = 'svmRadial')

For classification and regression using package kernlab with tuning parameters:

Support Vector Machines with Radial Basis Function Kernel (method = 'svmRadialCost')

For classification and regression using package kernlab with tuning parameters:

The lasso (method = 'lasso')

For regression using package elasticnet with tuning parameters:

Tree Models from Genetic Algorithms (method = 'evtree')

For classification and regression using package evtree with tuning parameters:

Tree-Based Ensembles (method = 'nodeHarvest')

For classification and regression using package nodeHarvest with tuning parameters:

Variational Bayesian Multinomial Probit Regression (method = 'vbmpRadial')

For classification using package vbmp with tuning parameters:

References

“Using your own model in train” (http://caret.r-forge.r-project.org/custom_models.html)


caret documentation built on May 2, 2019, 5:47 p.m.

Related to models in caret...