Description Usage Arguments Details Value Author(s) References See Also Examples
These classes can be used to estimate transformations and apply them to existing and future data
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | BoxCoxTrans(y, ...)
expoTrans(y, ...)
## Default S3 method:
BoxCoxTrans(y, x = rep(1, length(y)),
fudge = 0.2, numUnique = 3, na.rm = FALSE, ...)
## Default S3 method:
expoTrans(y, na.rm = TRUE, init = 0,
lim = c(-4, 4), method = "Brent",
numUnique = 3, ...)
## S3 method for class 'BoxCoxTrans'
predict(object, newdata, ...)
## S3 method for class 'expoTrans'
predict(object, newdata, ...)
|
y |
a numeric vector of data to be transformed. For |
x |
an optional dependent variable to be used in a linear model. |
fudge |
a tolerance value: lambda values within +/-fudge will be coerced to 0 and within 1+/-fudge will be coerced to 1. |
numUnique |
how many unique values should |
na.rm |
a logical value indicating whether |
init, lim, method |
initial values, limits and optimization method for |
... |
for |
object |
an object of class |
newdata |
a numeric vector of values to transform. |
BoxCoxTrans
function is basically a wrapper for the boxcox
function in the MASS library. It can be used to estimate the transformation and apply it to new data.
expoTrans
estimates the exponential transformation of Manly (1976) but assumes a common mean for the data. The transformation parameter is estimated by directly maximizing the likelihood.
If any(y <= 0)
or if length(unique(y)) < numUnique
, lambda is not estimated and no transformation is applied.
Both functions returns a list of class of either BoxCoxTrans
or expoTrans
with elements
lambda |
estimated transformation value |
fudge |
value of |
n |
number of data points used to estimate lambda |
summary |
the results of |
ratio |
|
skewness |
sample skewness statistic |
BoxCoxTrans
also returns:
fudge |
value of |
The predict
functions returns numeric vectors of transformed values
Max Kuhn
Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations (with discussion). Journal of the Royal Statistical Society B, 26, 211-252.
Manly, B. L. (1976) Exponential data transformations. The Statistician, 25, 37 - 42.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | data(BloodBrain)
ratio <- exp(logBBB)
bc <- BoxCoxTrans(ratio)
bc
predict(bc, ratio[1:5])
ratio[5] <- NA
bc2 <- BoxCoxTrans(ratio, bbbDescr$tpsa, na.rm = TRUE)
bc2
manly <- expoTrans(ratio)
manly
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.