Description Usage Arguments Details Value Author(s) Examples
$k$-nearest neighbour classification that can return class votes for all classes.
1 2 3 4 5 6 7 8 9 10 |
formula |
a formula of the form |
data |
optional data frame containing the variables in the model formula. |
subset |
optional vector specifying a subset of observations to be used. |
na.action |
function which indicates what should happen when
the data contain |
k |
number of neighbours considered. |
x |
a matrix of training set predictors |
y |
a factor vector of training set classes |
... |
additional parameters to pass to |
train |
matrix or data frame of training set cases. |
test |
matrix or data frame of test set cases. A vector will be interpreted as a row vector for a single case. |
cl |
factor of true classifications of training set |
l |
minimum vote for definite decision, otherwise |
prob |
If this is true, the proportion of the votes for each class
are returned as attribute |
use.all |
controls handling of ties. If true, all distances equal to the |
knn3 is essentially the same code as ipredknn
and knn3Train is a copy of knn. The underlying
C code from the class package has been modified to return the vote
percentages for each class (previously the percentage for the winning
class was returned).
An object of class knn3. See predict.knn3.
knn by W. N. Venables and B. D. Ripley and
ipredknn by
Torsten.Hothorn <Torsten.Hothorn@rzmail.uni-erlangen.de>,
modifications by Max Kuhn and Andre Williams
1 2 3 4 5 6 7 8 9 | irisFit1 <- knn3(Species ~ ., iris)
irisFit2 <- knn3(as.matrix(iris[, -5]), iris[,5])
data(iris3)
train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])
cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
knn3Train(train, test, cl, k = 5, prob = TRUE)
|
Loading required package: lattice
Loading required package: ggplot2
[1] "s" "s" "s" "s" "s" "s" "s" "s" "s" "s" "s" "s" "s" "s" "s" "s" "s" "s" "s"
[20] "s" "s" "s" "s" "s" "s" "c" "c" "v" "c" "c" "c" "c" "c" "v" "c" "c" "c" "c"
[39] "c" "c" "c" "c" "c" "c" "c" "c" "c" "c" "c" "c" "v" "c" "c" "v" "v" "v" "v"
[58] "v" "c" "v" "v" "v" "v" "c" "v" "v" "v" "v" "v" "v" "v" "v" "v" "v" "v"
attr(,"prob")
c s v
[1,] 0.0000000 1 0.0000000
[2,] 0.0000000 1 0.0000000
[3,] 0.0000000 1 0.0000000
[4,] 0.0000000 1 0.0000000
[5,] 0.0000000 1 0.0000000
[6,] 0.0000000 1 0.0000000
[7,] 0.0000000 1 0.0000000
[8,] 0.0000000 1 0.0000000
[9,] 0.0000000 1 0.0000000
[10,] 0.0000000 1 0.0000000
[11,] 0.0000000 1 0.0000000
[12,] 0.0000000 1 0.0000000
[13,] 0.0000000 1 0.0000000
[14,] 0.0000000 1 0.0000000
[15,] 0.0000000 1 0.0000000
[16,] 0.0000000 1 0.0000000
[17,] 0.0000000 1 0.0000000
[18,] 0.0000000 1 0.0000000
[19,] 0.0000000 1 0.0000000
[20,] 0.0000000 1 0.0000000
[21,] 0.0000000 1 0.0000000
[22,] 0.0000000 1 0.0000000
[23,] 0.0000000 1 0.0000000
[24,] 0.0000000 1 0.0000000
[25,] 0.0000000 1 0.0000000
[26,] 1.0000000 0 0.0000000
[27,] 1.0000000 0 0.0000000
[28,] 0.4000000 0 0.6000000
[29,] 1.0000000 0 0.0000000
[30,] 1.0000000 0 0.0000000
[31,] 1.0000000 0 0.0000000
[32,] 1.0000000 0 0.0000000
[33,] 1.0000000 0 0.0000000
[34,] 0.4000000 0 0.6000000
[35,] 0.8000000 0 0.2000000
[36,] 1.0000000 0 0.0000000
[37,] 1.0000000 0 0.0000000
[38,] 1.0000000 0 0.0000000
[39,] 1.0000000 0 0.0000000
[40,] 1.0000000 0 0.0000000
[41,] 1.0000000 0 0.0000000
[42,] 1.0000000 0 0.0000000
[43,] 1.0000000 0 0.0000000
[44,] 1.0000000 0 0.0000000
[45,] 1.0000000 0 0.0000000
[46,] 1.0000000 0 0.0000000
[47,] 1.0000000 0 0.0000000
[48,] 1.0000000 0 0.0000000
[49,] 1.0000000 0 0.0000000
[50,] 1.0000000 0 0.0000000
[51,] 0.0000000 0 1.0000000
[52,] 0.8000000 0 0.2000000
[53,] 0.6000000 0 0.4000000
[54,] 0.0000000 0 1.0000000
[55,] 0.0000000 0 1.0000000
[56,] 0.0000000 0 1.0000000
[57,] 0.0000000 0 1.0000000
[58,] 0.0000000 0 1.0000000
[59,] 0.6666667 0 0.3333333
[60,] 0.2000000 0 0.8000000
[61,] 0.0000000 0 1.0000000
[62,] 0.0000000 0 1.0000000
[63,] 0.0000000 0 1.0000000
[64,] 0.6000000 0 0.4000000
[65,] 0.0000000 0 1.0000000
[66,] 0.0000000 0 1.0000000
[67,] 0.0000000 0 1.0000000
[68,] 0.0000000 0 1.0000000
[69,] 0.0000000 0 1.0000000
[70,] 0.0000000 0 1.0000000
[71,] 0.0000000 0 1.0000000
[72,] 0.2000000 0 0.8000000
[73,] 0.0000000 0 1.0000000
[74,] 0.0000000 0 1.0000000
[75,] 0.2000000 0 0.8000000
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.