DDEPN (Dynamic Deterministic Effects Propagation Networks): Infer signalling networks for timecourse data. Given a matrix of high-throughput genomic or proteomic timecourse data, generated after external perturbation of the biological system, DDEPN models the time-dependent propagation of active and passive states depending on a network structure. Optimal network structures given the experimental data are reconstructed. Two network inference algorithms can be used: inhibMCMC, a Markov Chain Monte Carlo sampling approach and GA, a Genetic Algorithm network optimisation. Inclusion of prior biological knowledge can be done using different network prior models.
Package details |
|
|---|---|
| Author | Christian Bender |
| Maintainer | Christian Bender <benderpkg@gmail.com> |
| License | GPL (>=2) |
| Version | 2.2.3 |
| Package repository | View on R-Forge |
| Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.