ght | R Documentation |
Density, distribution function, quantile function and random generation for the generalized hyperbolic Student-t distribution.
dght(x, beta = 0.1, delta = 1, mu = 0, nu = 10, log = FALSE)
pght(q, beta = 0.1, delta = 1, mu = 0, nu = 10)
qght(p, beta = 0.1, delta = 1, mu = 0, nu = 10)
rght(n, beta = 0.1, delta = 1, mu = 0, nu = 10)
x , q |
a numeric vector of quantiles. |
p |
a numeric vector of probabilities. |
n |
number of observations. |
beta |
numeric value, the skewness parameter in the range |
delta |
numeric value, the scale parameter, must be zero or positive. |
mu |
numeric value, the location parameter, by default 0. |
nu |
a numeric value, the number of degrees of freedom. Note,
|
log |
a logical, if TRUE, probabilities |
dght
gives the density,
pght
gives the distribution function,
qght
gives the quantile function, and
rght
generates random deviates.
The parameters are as in the first parameterization.
numeric vector
Atkinson, A.C. (1982); The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM J. Sci. Stat. Comput. 3, 502–515.
Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401–419.
Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700–707. New York: Wiley.
Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.
## ght -
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.