dist-nigMode: Normal Inverse Gaussian Mode

nigModeR Documentation

Normal Inverse Gaussian Mode

Description

Computes the mode of the norm inverse Gaussian distribution.

Usage

nigMode(alpha = 1, beta = 0, delta = 1, mu = 0)

Arguments

alpha

shape parameter.

beta

skewness parameter beta, abs(beta) is in the range (0, alpha).

delta

scale parameter, must be zero or positive.

mu

location parameter, by default 0.

Value

a numeric value, the mode of the normal inverse Gaussian distribution

References

Atkinson, A.C. (1982); The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM J. Sci. Stat. Comput. 3, 502–515.

Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401–419.

Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700–707. New York: Wiley.

Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.

Examples

   
## nigMode -
   nigMode()

fBasics documentation built on Aug. 20, 2024, 3:01 a.m.