nig | R Documentation |
Density, distribution function, quantile function and random generation for the normal inverse Gaussian distribution.
dnig(x, alpha = 1, beta = 0, delta = 1, mu = 0, log = FALSE)
pnig(q, alpha = 1, beta = 0, delta = 1, mu = 0)
qnig(p, alpha = 1, beta = 0, delta = 1, mu = 0)
rnig(n, alpha = 1, beta = 0, delta = 1, mu = 0)
x , q |
a numeric vector of quantiles. |
p |
a numeric vector of probabilities. |
n |
number of observations. |
alpha |
shape parameter. |
beta |
skewness parameter |
delta |
scale parameter, must be zero or positive. |
mu |
location parameter, by default 0. |
log |
a logical flag by default |
dnig
gives the density.
pnig
gives the distribution function.
qnig
gives the quantile function, and
rnig
generates random deviates.
The parameters alpha, beta, delta, mu
are in the first
parameterization of the distribution.
The random deviates are calculated with the method described by Raible (2000).
numeric vector
David Scott for code implemented from R's contributed package
HyperbolicDist
.
Atkinson, A.C. (1982); The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM J. Sci. Stat. Comput. 3, 502–515.
Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401–419.
Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700–707. New York: Wiley.
Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.
## nig -
set.seed(1953)
r = rnig(5000, alpha = 1, beta = 0.3, delta = 1)
plot(r, type = "l", col = "steelblue",
main = "nig: alpha=1 beta=0.3 delta=1")
## nig -
# Plot empirical density and compare with true density:
hist(r, n = 25, probability = TRUE, border = "white", col = "steelblue")
x = seq(-5, 5, 0.25)
lines(x, dnig(x, alpha = 1, beta = 0.3, delta = 1))
## nig -
# Plot df and compare with true df:
plot(sort(r), (1:5000/5000), main = "Probability", col = "steelblue")
lines(x, pnig(x, alpha = 1, beta = 0.3, delta = 1))
## nig -
# Compute Quantiles:
qnig(pnig(seq(-5, 5, 1), alpha = 1, beta = 0.3, delta = 1),
alpha = 1, beta = 0.3, delta = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.