gld | R Documentation |
Density, distribution function, quantile function and random generation for the generalized lambda distribution.
dgld(x, lambda1 = 0, lambda2 = -1, lambda3 = -1/8, lambda4 = -1/8, log = FALSE)
pgld(q, lambda1 = 0, lambda2 = -1, lambda3 = -1/8, lambda4 = -1/8)
qgld(p, lambda1 = 0, lambda2 = -1, lambda3 = -1/8, lambda4 = -1/8)
rgld(n, lambda1 = 0, lambda2 = -1, lambda3 = -1/8, lambda4 = -1/8)
lambda1 |
location parameter. |
lambda2 |
scale parameter. |
lambda3 |
first shape parameter. |
lambda4 |
second shape parameter. |
n |
number of observations. |
p |
a numeric vector of probabilities. |
x , q |
a numeric vector of quantiles. |
log |
a logical, if TRUE, probabilities |
dgld
gives the density,
pgld
gives the distribution function,
qgld
gives the quantile function, and
rgld
generates random deviates.
numeric vector
Chong Gu for code implemented from R's contributed package gld
.
## rgld -
set.seed(1953)
r = rgld(500,
lambda1=0, lambda2=-1, lambda3=-1/8, lambda4=-1/8)
plot(r, type = "l", col = "steelblue",
main = "gld: lambda1=0 lambda2=-1 lambda3/4=-1/8")
## dgld -
# Plot empirical density and compare with true density:
hist(r, n = 25, probability = TRUE, border = "white",
col = "steelblue")
x = seq(-5, 5, 0.25)
lines(x, dgld(x,
lambda1=0, lambda2=-1, lambda3=-1/8, lambda4=-1/8))
## pgld -
# Plot df and compare with true df:
plot(sort(r), ((1:500)-0.5)/500, main = "Probability",
col = "steelblue")
lines(x, pgld(x,
lambda1=0, lambda2=-1, lambda3=-1/8, lambda4=-1/8))
## qgld -
# Compute Quantiles:
qgld(pgld(seq(-5, 5, 1),
lambda1=0, lambda2=-1, lambda3=-1/8, lambda4=-1/8),
lambda1=0, lambda2=-1, lambda3=-1/8, lambda4=-1/8)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.