| hyp | R Documentation |
Density, distribution function, quantile function and random generation for the hyperbolic distribution.
dhyp(x, alpha = 1, beta = 0, delta = 1, mu = 0, pm = 1, log = FALSE)
phyp(q, alpha = 1, beta = 0, delta = 1, mu = 0, pm = 1, ...)
qhyp(p, alpha = 1, beta = 0, delta = 1, mu = 0, pm = 1, ...)
rhyp(n, alpha = 1, beta = 0, delta = 1, mu = 0, pm = 1)
x, q |
numeric vector of quantiles. |
p |
numeric vector of probabilities. |
n |
number of observations. |
alpha |
shape parameter, a positive number. |
beta |
skewness parameter, |
delta |
scale parameter, must be zero or positive. |
mu |
location parameter, by default 0. |
pm |
integer number specifying the parameterisation, one of
|
log |
a logical value, if |
... |
arguments to be passed to the function |
dhyp gives the density,
phyp gives the distribution function,
qhyp gives the quantile function, and
rhyp generates random deviates.
The meaning of the parameters given above corresponds to the first
parameterization, pm = 1, which is the default.
In the second parameterization, pm=2, alpha and
beta take the meaning of the shape parameters (usually named)
zeta and rho.
In the third parameterization, pm=3, alpha and
beta take the meaning of the shape parameters (usually named)
xi and chi.
In the fourth parameterization, pm=4, alpha and
beta take the meaning of the shape parameters (usually named)
a.bar and b.bar.
The generator rhyp is based on the HYP algorithm given by
Atkinson (1982).
numeric vector
David Scott for code implemented from R's contributed package HyperbolicDist.
Atkinson, A.C. (1982); The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM J. Sci. Stat. Comput. 3, 502–515.
Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401–419.
Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700–707. New York: Wiley.
Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.
## hyp -
set.seed(1953)
r = rhyp(5000, alpha = 1, beta = 0.3, delta = 1)
plot(r, type = "l", col = "steelblue",
main = "hyp: alpha=1 beta=0.3 delta=1")
## hyp -
# Plot empirical density and compare with true density:
hist(r, n = 25, probability = TRUE, border = "white", col = "steelblue")
x = seq(-5, 5, 0.25)
lines(x, dhyp(x, alpha = 1, beta = 0.3, delta = 1))
## hyp -
# Plot df and compare with true df:
plot(sort(r), (1:5000/5000), main = "Probability", col = "steelblue")
lines(x, phyp(x, alpha = 1, beta = 0.3, delta = 1))
## hyp -
# Compute Quantiles:
qhyp(phyp(seq(-5, 5, 1), alpha = 1, beta = 0.3, delta = 1),
alpha = 1, beta = 0.3, delta = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.