Nothing
### Graphical Test for Generalized Linear Autocorrelation Moving Average
### Functions with name test.* are run by R CMD check or by make if
### LEVEL=1 in call to make
### Functions with name levelntest.* are run by make if
### LEVEL=n in call to make
### Functions with name graphicstest.* are run by make if
### LEVEL=graphics in call to make
graphictests.plot.glarma <- function(){
## Purpose: Test the plot function with Poisson Distribution
data(Polio)
y <- Polio[, 2]
X <- as.matrix(Polio[, 3:8])
glarmamod <- glarma(y, X, thetaLags = c(1, 2, 5), type = "Poi", method = "FS",
residuals = "Pearson", maxit = 100, grad = 1e-6)
## open file for graphical output
graphicsOutput <- paste(pathReport, "glarma.pdf", sep = "")
cat("Graphics output in file ", graphicsOutput, "\n")
pdf(file = graphicsOutput, height = 7, width = 10)
par(mfrow = c(1, 2))
plot(glarmamod)
## Purpose: Test the plot function with Binomial Distribution
data(RobberyConvict)
datalen <- dim(RobberyConvict)[1]
monthmat <- matrix(0, nrow = datalen, ncol = 12)
dimnames(monthmat) <- list(NULL, c("Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
months <- unique(months(strptime(RobberyConvict$Date, "%m/%d/%Y"),
abbreviate = TRUE))
for (j in 1:12) {
monthmat[months(strptime(RobberyConvict$Date, "%m/%d/%Y"),
abbreviate = TRUE) == months[j], j] <- 1
}
RobberyConvict <- cbind(rep(1, datalen), RobberyConvict, monthmat)
rm(monthmat)
## LOWER COURT ROBBERY
y1 <- RobberyConvict$LC.Y
n1 <- RobberyConvict$LC.N
Y <- cbind(y1, n1 - y1)
glm.LCRobbery <- glm(Y ~ -1 + Incpt + Step.2001 +
I(Feb + Mar + Apr + May + Jun + Jul) +
I(Aug + Sep + Oct + Nov + Dec),
data = RobberyConvict, family = binomial(link = logit),
na.action = na.omit, x = TRUE)
X <- glm.LCRobbery$x
## Newton Raphson
glarmamod <- glarma(Y, X, phiLags = c(1), type = "Bin", method = "NR",
residuals = "Pearson", maxit = 100, grad = 1e-6)
plot(glarmamod)
## Purpose: Test the plot function with Negative Binomial Distribution
data(Asthma)
y <- Asthma[, 1]
X <- as.matrix(Asthma[, 2:16])
glarmamod <- glarma(y, X, thetaLags = 7, type = "NegBin", method = "NR",
residuals = "Pearson", maxit = 100, grad = 1e-6)
plot(glarmamod)
dev.off()
return()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.