Description Usage Arguments Value Author(s) Examples
Evaluate all possible models
| 1 2 3 4 |   exhaustive(modelData,
    modelPrior = c("flat", "exponential", "independent", "dependent", "dep.linear"),
    modelConfigs = NULL, algorithm = c("2", "1"),
    computation = getComputation(), order = FALSE)
 | 
| modelData | the data necessary for model estimation,
which is the result from  | 
| modelPrior | either “flat” (default),
“exponential”, “independent”,
“dependent”, or “dep.linear”, see
 | 
| modelConfigs | optional matrix of model
configurations, which are then evaluated instead of all
possible configurations. It is check for coherency with
 | 
| algorithm | either “2” (default, fast for small dimension of spline coefficients) or “1” (fast for small number of observations), specifying the algorithm version. Only matters for normal models, for GLMs always a type 2 algorithm is used. | 
| computation | computation options produced by
 | 
| order | should the models be ordered after their
posterior probability? (default:  | 
a list with the data frame “models” comprising the model configurations, (R2 for normal models) / log marginal likelihoods / log priors / posteriors; and the inclusion probabilities matrix “inclusionProbs”.
Daniel Sabanes Bove daniel.sabanesbove@ifspm.uzh.ch
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | ## get some data
attach(longley)
## get model data
md <- modelData(y=Employed,
                X=cbind(GNP, Armed.Forces))
## get a list of all possible models with this data
res <- exhaustive(md)
res
## now the same, but with cubic splines and algorithm 1:
## get model data
md <- modelData(y=Employed,
                X=cbind(GNP, Armed.Forces),
                splineType="cubic")
## get a list of all possible models with this data
res <- exhaustive(md,
                  algorithm="1")
res
## now only compute for two certain model configurations:
configs <- cbind(GNP=c(1L, 3L),
                 Armed.Forces=c(2L, 3L))
res <- exhaustive(md,
                  modelConfigs=configs)
## now for generalised response:
## get the model data
md <- glmModelData(y=as.numeric(Employed > 64),
                   X=cbind(GNP, Armed.Forces),
                   family=binomial)
## and do the exhaustive search
res <- exhaustive(md,
                  modelPrior="dependent",
                  computation=
                  getComputation(higherOrderCorrection=FALSE,
                                 debug=FALSE))
res$models <- res$models[order(res$models$post, decreasing=TRUE), ]
res
res1 <- exhaustive(md,
                  computation=
                  getComputation(higherOrderCorrection=FALSE,
                                 debug=FALSE))
res2 <- exhaustive(md,
                  computation=
                  getComputation(higherOrderCorrection=FALSE,
                                 debug=FALSE))
res3 <- exhaustive(md,
                  computation=
                  getComputation(higherOrderCorrection=FALSE,
                                 debug=TRUE))
str(res1)
identical(res1, res2)
identical(res1, res3)
## now with offsets:
set.seed(93)
offsets <- rnorm(n=length(Employed))
md <- glmModelData(y=round(Employed / 10),
                   X=cbind(GNP, Armed.Forces),
                   family=poisson,
                   offsets=offsets)
res <- exhaustive(md,
                  computation=
                  getComputation(higherOrderCorrection=TRUE,
                                 debug=TRUE))
res
res <- exhaustive(md,
                  computation=
                  getComputation(higherOrderCorrection=TRUE,
                                 debug=TRUE))
res
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.