Description Usage Arguments Details Value Author(s) Examples
Functions to calculate and plot Receiver Operating Characteristic (ROC) curves for one or more sets of predictions, and for one or more objects of class mixmod
or mdmixmod
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ## Default S3 method:
rocinfo(x, labels, quasi=FALSE, ...)
## S3 method for class 'mixmod'
rocinfo(x, labels, quasi=FALSE, ...)
## S3 method for class 'rocinfo'
plot(x, legend="x", cex.legend=1, auc=TRUE, dca=TRUE,
col=1, lty=1, lwd=1, ylab="true positive rate",
xlab=ifelse(x$quasi, "all positive rate", "false positive rate"),
grid=FALSE, gridres=0.1, gridcol="lightgray", gridlty="dashed", ...)
## Default S3 method:
rocauc(x, labels, quasi=FALSE, ...)
## S3 method for class 'mixmod'
rocauc(x, labels, quasi=FALSE, ...)
multiroc(x, labels, quasi=FALSE)
## S3 method for class 'multiroc'
plot(x, legend=names(x), cex.legend=1, auc=TRUE, dca=FALSE, bw=FALSE,
col=(if(bw) rep(1, length(x)) else 1:length(x)),
lty=(if(bw) 1:length(x) else rep(1, length(x))),
lwd=rep(1, length(x)), ylab="true positive rate",
xlab=ifelse(x[[1]]$quasi, "all positive rate", "false positive rate"),
grid=FALSE, gridres=0.1, gridcol="lightgray", gridlty="dashed", ...)
|
x |
for |
labels |
a vector of logical values of the same length as the probabilities, in which a value of |
quasi |
logical; if |
legend |
character or |
cex.legend |
magnification to be used for legend text. |
auc |
logical; if |
dca |
logical; if |
bw |
logical; if |
col, lty, lwd, ylab, xlab |
as the equivalent arguments to |
grid |
logical; if |
gridres, gridcol, gridlty |
resolution, color, and line type for the grid. No effect if |
... |
further arguments to |
rocinfo
calculates the ROC curve x coordinates (false positive rate, or all positive rate if quasi
is TRUE
), y coordinates (true positive rate), AUC, and DCA for the given probabilities and labels. multiroc
performs the same function for multiple probabilities, and optionally multiple labels.
For rocinfo
, a list of class rocinfo
having the following elements:
tpr |
the true positive rate in ascending order of the probabilities. |
fpr |
the false positive rate in ascending order of the probabilities. |
apr |
the all positive rate in ascending order of the probabilities. |
auc |
the Area Under the Curve. |
dca |
the Distance of Closest Approach. |
quasi |
logical; the same as the argument to |
For rocauc
, the numerical value of the AUC.
For multiroc
, a list of class multiroc
having elements of class rocinfo
.
The plot
and lines
methods are used for their side effects.
Daniel Dvorkin
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## Not run:
### multiple ROC curves for a single set of labels
data(CiData)
data(CiGene)
CiJoint <- lapply(namedList("layered", "chained"), function(top)
mdmixmod(CiData, c(2,3,2), family=c("pvii", "norm", "pvii"),
topology=top))
CiMarginal <- marginals(CiJoint$layered) # same for $layered and $chained
CiFits <- c(CiJoint, CiMarginal)
sapply(CiFits, rocauc, labels=CiGene$target)
# layered chained binding expression conservation
# 0.8507258 0.8913765 0.8596395 0.7943286 0.7479479
plot(multiroc(CiFits, CiGene$target), grid=TRUE)
### multiple ROC curves for multiple labels
DlFits <- mdmixmod(DlData, c(2,2,2), family=c("norm", "norm", "pvii"))
AllFits = list(Ci=CiJoint$chained, Dl=DlFits)
plot(multiroc(AllFits, list(Ci=CiGene$target, Dl=DlGene$target)))
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.