Estimates the casewise concordance based on Concordance and marginal estimate using prodlim but no testing

Share:

Description

.. content for description (no empty lines) ..

Usage

1
casewise(conc, marg, cause.marg)

Arguments

conc

Concordance

marg

Marginal estimate

cause.marg

specififes which cause that should be used for marginal cif based on prodlim

Author(s)

Thomas Scheike

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
library(prodlim)
data(prt);

### marginal cumulative incidence of prostate cancer##'
outm <- prodlim(Hist(time,status)~+1,data=prt)

times <- 60:100
cifmz <- predict(outm,cause=2,time=times,newdata=data.frame(zyg="MZ")) ## cause is 2 (second cause)
cifdz <- predict(outm,cause=2,time=times,newdata=data.frame(zyg="DZ"))

### concordance for MZ and DZ twins
cc <- bicomprisk(Event(time,status)~strata(zyg)+id(id),data=prt,cause=c(2,2),prodlim=TRUE)
cdz <- cc$model$"DZ"
cmz <- cc$model$"MZ"

cdz <- casewise(cdz,outm,cause.marg=2)
cmz <- casewise(cmz,outm,cause.marg=2)

plot(cmz,ci=NULL,ylim=c(0,0.5),xlim=c(60,100),legend=TRUE,col=c(3,2,1))
par(new=TRUE)
plot(cdz,ci=NULL,ylim=c(0,0.5),xlim=c(60,100),legend=TRUE)
summary(cdz)
summary(cmz)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.