Estimation of twostage model with cluster truncation in bivariate situation

Share:

Description

Estimation of twostage model with cluster truncation in bivariate situation

Usage

1
2
twin.clustertrunc(survformula, data = sys.parent(), theta.des = NULL,
  clusters = NULL, Nit = 10, final.fitting = FALSE, ...)

Arguments

survformula

Formula with survival model aalen or cox.aalen, some limitiation on model specification due to call of fast.reshape (so for example interactions and * and : do not work here, expand prior to call)

data

Data frame

theta.des

design for dependence parameters in two-stage model

clusters

clustering variable for twins

Nit

number of iteration

final.fitting

TRUE to do final estimation with SE and ... arguments for marginal models

...

Additional arguments to lower level functions

Author(s)

Thomas Scheike

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
data(diabetes)
v <- diabetes$time*runif(nrow(diabetes))*rbinom(nrow(diabetes),1,0.5)
diabetes$v <- v

aout <- twin.clustertrunc(Surv(v,time,status)~1+treat+adult,
			 data=diabetes,clusters="id")
aout$two        ## twostage output
par(mfrow=c(2,2))
plot(aout$marg) ## marginal model output

out <- twin.clustertrunc(Surv(v,time,status)~1+prop(treat)+prop(adult),
			 data=diabetes,clusters="id")
out$two        ## twostage output
plot(out$marg) ## marginal model output

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.