Description Usage Arguments Examples
Bivariate Probit model
| 1 2 3 4 5 6 | biprobit(x, data, id, rho = ~1, num = NULL, strata = NULL,
  eqmarg = TRUE, indep = FALSE, weights = NULL, biweight,
  samecens = TRUE, randomeffect = FALSE, vcov = "robust",
  pairs.only = FALSE, allmarg = samecens & !is.null(weights),
  control = list(trace = 0), messages = 1, constrain = NULL,
  table = pairs.only, p = NULL, ...)
 | 
| x | formula (or vector) | 
| data | data.frame | 
| id | The name of the column in the dataset containing the cluster id-variable. | 
| rho | Formula specifying the regression model for the dependence parameter | 
| num | Optional name of order variable | 
| strata | Strata | 
| eqmarg | If TRUE same marginals are assumed (exchangeable) | 
| indep | Independence | 
| weights | Weights | 
| biweight | Function defining the bivariate weight in each cluster | 
| samecens | Same censoring | 
| randomeffect | If TRUE a random effect model is used (otherwise correlation parameter is estimated allowing for both negative and positive dependence) | 
| vcov | Type of standard errors to be calculated | 
| pairs.only | Include complete pairs only? | 
| allmarg | Should all marginal terms be included | 
| control | Control argument parsed on to the optimization routine. Starting values may be parsed as ' | 
| messages | Control amount of messages shown | 
| constrain | Vector of parameter constraints (NA where free). Use this to set an offset. | 
| table | Type of estimation procedure | 
| p | Parameter vector p in which to evaluate log-Likelihood and score function | 
| ... | Optional arguments | 
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | data(prt)
prt0 <- subset(prt,country=="Denmark")
a <- biprobit(cancer~1+zyg, ~1+zyg, data=prt0, id="id")
b <- biprobit(cancer~1+zyg, ~1+zyg, data=prt0, id="id",pairs.only=TRUE)
predict(b,newdata=Expand(prt,zyg=c("MZ")))
predict(b,newdata=Expand(prt,zyg=c("MZ","DZ")))
prtw <- ipw(Surv(time,status==0)~1,data=prt0)
b1 <- biprobit(cancer~1+zyg, ~1+zyg, data=prtw, id="id", weights="w", pairs.only=TRUE,table=FALSE)
b2 <- biprobit(cancer~1+zyg, ~1+zyg, data=prtw, id="id", weights="w", pairs.only=TRUE)
m <- lvm(c(y1,y2)~x)
covariance(m,y1~y2) <- "r"
constrain(m,r~x+a+b) <- function(x) tanh(x[2]+x[3]*x[1])
distribution(m,~x) <- uniform.lvm(a=-1,b=1)
ordinal(m) <- ~y1+y2
d <- sim(m,1000,p=c(a=0,b=-1)); d <- d[order(d$x),]
dd <- fast.reshape(d)
a <- biprobit(y~1+x,rho=~1+x,data=dd,id="id")
summary(a, mean.contrast=c(1,.5), cor.contrast=c(1,.5))
with(predict(a,data.frame(x=seq(-1,1,by=.1))), plot(p00~x,type="l"))
pp <- predict(a,data.frame(x=seq(-1,1,by=.1)),which=c(1))
plot(pp[,1]~pp$x, type="l", xlab="x", ylab="Concordance", lwd=2, xaxs="i")
confband(pp$x,pp[,2],pp[,3],polygon=TRUE,lty=0,col=Col(1))
##'
pp <- predict(a,data.frame(x=seq(-1,1,by=.1)),which=c(9)) ## rho
plot(pp[,1]~pp$x, type="l", xlab="x", ylab="Correlation", lwd=2, xaxs="i")
confband(pp$x,pp[,2],pp[,3],polygon=TRUE,lty=0,col=Col(1))
with(pp, lines(x,tanh(-x),lwd=2,lty=2))
##'
## Time
## Not run: 
    a <- biprobit.time(cancer~1, rho=~1+zyg, id="id", data=prt, eqmarg=TRUE,
                       cens.formula=Surv(time,status==0)~1,
                       breaks=seq(75,100,by=3),fix.censweights=TRUE)
    a <- biprobit.time2(cancer~1+zyg, rho=~1+zyg, id="id", data=prt0, eqmarg=TRUE,
                       cens.formula=Surv(time,status==0)~zyg,
                       breaks=100)
    a1 <- biprobit.time2(cancer~1, rho=~1, id="id", data=subset(prt0,zyg=="MZ"), eqmarg=TRUE,
                       cens.formula=Surv(time,status==0)~1,
                       breaks=100,pairs.only=TRUE)
    a2 <- biprobit.time2(cancer~1, rho=~1, id="id", data=subset(prt0,zyg=="DZ"), eqmarg=TRUE,
                        cens.formula=Surv(time,status==0)~1,
                        breaks=100,pairs.only=TRUE)
    plot(a,which=3,ylim=c(0,0.1))
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.