Description Usage Arguments Details Value Author(s) Examples
Calculates a consensus RDA. That is, a consensus for a series of RDA performed on the same data using different association coefficients.
1 | consensusRDA(ordires, ordisigniaxis, resp.var, expl.var, pval = 0.05, scaling = 2)
|
ordires |
A list of |
ordisigniaxis |
A list of |
resp.var |
A matrix of the response variables (species) used to construct all the RDAs (or db-RDAs) in |
expl.var |
A matrix of the explanatory variables used to construct all the RDAs (or db-RDAs) in |
pval |
Numeric. P-value threshold to select the number of axes to use. This argument is only active if a list of |
scaling |
Type of scaling used to project the consensus RDA result. A distance scaling (scaling = 1) or a correlation scaling (scaling = 2) can be used. Default is scaling = 1. See details for more information. |
For the argument ordisigniaxis
, if a vector defining the number of significant axes is given, it is assumed that the significant axes are selected in sequential order from the first axis.
Although it is possible for the scaling to be 3 (it is available in the vegan package), this scaling should only be used for canonical correspondence analysis (CCA); it does not make any sense to use in the RDA framework.
value |
A vector of eigenvalues associated to the axes of the consensus RDA |
siteConsensus |
A matrix of consensus sites scores |
spConsensus |
A matrix of consensus species scores |
descConsensus |
A matrix of consensus canonical coefficients |
F. Guillaume Blanchet
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | ###########################################################################
### This example reproduces Figure 7c of Blanchet et al. (in press)
###
### However, for illustration purposes RDA axes were tested using anova.cca
### This only has minor influence on the triplot.
###########################################################################
data(beetle)
data(beetle.expl)
### Construct results object
ndis<-9
ordiRes<-vector("list",length=ndis)
### RDA species profile
sp<-beetle/apply(beetle,1,sum)
ordiRes[[1]]<-rda(sp~.,data=beetle.expl)
### RDA chord
chord<-beetle/sqrt(apply(beetle^2,1,sum))
ordiRes[[2]]<-rda(chord~.,data=beetle.expl)
### RDA Hellinger
hell<-decostand(beetle,method="hellinger")
ordiRes[[3]]<-rda(hell~.,data=beetle.expl)
### db-RDA Bray-Curtis
bray<-sqrt(vegdist(beetle,method="bray"))
ordiRes[[4]]<-capscale(bray~.,data=beetle.expl,comm=beetle)
### db-RDA square-root Bray-Curtis
bray.sqrt<-sqrt(vegdist(beetle^0.5,method="bray"))
ordiRes[[5]]<-capscale(bray.sqrt~.,data=beetle.expl,comm=beetle^0.5)
### db-RDA fourth-root Bray-Curtis
bray.fort<-sqrt(vegdist(beetle^0.25,method="bray"))
ordiRes[[6]]<-capscale(bray.fort~.,data=beetle.expl,comm=beetle^0.25)
### db-RDA modified Gower log 2
beetleLog2<-decostand(beetle, "log",logbase=2)
mGowerLog2<-vegdist(beetleLog2, "altGower")
ordiRes[[7]]<-capscale(mGowerLog2~.,data=beetle.expl,comm=beetleLog2)
### db-RDA modified Gower log 5
beetleLog5<-decostand(beetle, "log",logbase=5)
mGowerLog5<-vegdist(beetleLog5, "altGower")
ordiRes[[8]]<-capscale(mGowerLog5~.,data=beetle.expl,comm=beetleLog5)
### db-RDA modified Gower log 10
beetleLog10<-decostand(beetle, "log",logbase=10)
mGowerLog10<-vegdist(beetleLog10, "altGower")
ordiRes[[9]]<-capscale(mGowerLog10~.,data=beetle.expl,comm=beetleLog10)
#----------------
### Test RDA axis
#----------------
ordiResTest<-vector("list",length=ndis)
## Not run:
for(i in 1:ndis){
ordiResTest[[i]]<-anova.cca(ordiRes[[i]],by="axis",cutoff=0.1,perm.max=100)
}
## End(Not run)
ordiResTest<-c(3,3,4,4,4,4,3,4,4) ## This output is an alternative to the previous code
### Consensus RDA
consRDA<-consensusRDA(ordiRes,ordiResTest,beetle,beetle.expl)
summary(consRDA)
XaxisLabels<-paste("Axis 1 - ",round(consRDA$values[1]/sum(consRDA$values),4)*100,sep="")
YaxisLabels<-paste("Axis 2 - ",round(consRDA$values[2]/sum(consRDA$values),4)*100,sep="")
plot(consRDA$siteConsensus[,1:2],pch=19,xlab=XaxisLabels,ylab=YaxisLabels,las=1)
abline(h=0,v=0,lty=3)
arrows(0,0,consRDA$spConsensus[,1]*10,consRDA$spConsensus[,2]*10,
col="red",length=0.1,angle=12)
text(consRDA$spConsensus[,1:2]*10,labels=rownames(consRDA$spConsensus),col="red")
arrows(0,0,consRDA$descConsensus[,1]*0.4,consRDA$descConsensus[,2]*0.4,
col="blue",length=0.1,angle=12)
text(consRDA$descConsensus[,1:2]*0.4,labels=rownames(consRDA$descConsensus),col="blue")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.