Nothing
forward.sel.par <- function(Y, X, alpha = 0.05, K = nrow(X)-1, R2thresh = 0.99, R2more = 0.001, adjR2thresh = 0.99, Yscale = FALSE, verbose=TRUE)
##
## Parametric forward selection of explanatory variables in regression and RDA.
## Y is the response, X is the table of explanatory variables.
##
## If Y is univariate, this function implements FS in regression.
## If Y is multivariate, this function implements FS using the F-test described
## by Miller and Farr (1971). This test requires that
## -- the Y variables be standardized,
## -- the error in the response variables be normally distributed (to be verified by the user).
##
## This function uses 'simpleRDA2' and 'RsquareAdj' developed for 'varpart' in 'vegan'.
##
## Pierre Legendre & Guillaume Blanchet, May 2007
##
## Arguments --
##
## Y Response data matrix with n rows and m columns containing quantitative variables.
## X Explanatory data matrix with n rows and p columns containing quantitative variables.
## alpha Significance level. Stop the forward selection procedure if the p-value of a variable is higher than alpha. The default is 0.05.
## K Maximum number of variables to be selected. The default is one minus the number of rows.
## R2thresh Stop the forward selection procedure if the R-square of the model exceeds the stated value. This parameter can vary from 0.001 to 1.
## R2more Stop the forward selection procedure if the difference in model R-square with the previous step is lower than R2more. The default setting is 0.001.
## adjR2thresh Stop the forward selection procedure if the adjusted R-square of the model exceeds the stated value. This parameter can take any value (positive or negative) smaller than 1.
## Yscale Standardize the variables in table Y to variance 1. The default setting is FALSE. The setting is automatically changed to TRUE if Y contains more than one variable. This is a validity condition for the parametric test of significance (Miller and Farr 1971).
##
## Reference:
## Miller, J. K., and S. D. Farr. 1971. Bimultivariate redundancy: a comprehensive measure of
## interbattery relationship. Multivariate Behavioral Research 6: 313-324.
{
require(vegan)
FPval <- function(R2cum,R2prev,n,mm,p)
## Compute the partial F and p-value after adding a single explanatory variable to the model.
## In FS, the number of df of the numerator of F is always 1. See Sokal & Rohlf 1995, eq 16.14.
##
## The amendment, based on Miller and Farr (1971), consists in multiplying the numerator and
## denominator df by 'p', the number of variables in Y, when computing the p-value.
##
## Pierre Legendre, May 2007
{
df2 <- (n-1-mm)
Fstat <- ((R2cum-R2prev)*df2) / (1-R2cum)
pval <- pf(Fstat,1*p,df2*p,lower.tail=FALSE)
return(list(Fstat=Fstat,pval=pval))
}
Y <- as.matrix(Y)
X <- apply(as.matrix(X),2,scale,center=TRUE,scale=TRUE)
var.names = colnames(as.data.frame(X))
n <- nrow(X)
m <- ncol(X)
if(nrow(Y) != n) stop("Numbers of rows not the same in Y and X")
p <- ncol(Y)
if(p > 1) {
Yscale = TRUE
if(verbose) cat("The variables in response matrix Y have been standardized",'\n')
}
Y <- apply(Y,2,scale,center=TRUE,scale=Yscale)
SS.Y <- sum(Y^2)
X.out <- c(1:m)
## Find the first variable X to include in the model
R2prev <- 0
R2cum <- 0
for(j in 1:m) {
toto <- simpleRDA2(Y,X[,j],SS.Y)
if(toto$Rsquare > R2cum) {
R2cum <- toto$Rsquare
no.sup <- j
}
}
mm <- 1
FP <- FPval(R2cum,R2prev,n,mm,p)
if(FP$pval <= alpha) {
adjRsq <- RsquareAdj(R2cum,n,mm)
res1 <- var.names[no.sup]
res2 <- no.sup
res3 <- R2cum
res4 <- R2cum
res5 <- adjRsq
res6 <- FP$Fstat
res7 <- FP$pval
X.out[no.sup] <- 0
delta <- R2cum
} else {
stop("Procedure stopped (alpha criterion): pvalue for variable ",no.sup," is ",FP$pval)
}
## Add variables X to the model
while((FP$pval <= alpha) & (mm <= K) & (R2cum <= R2thresh) & (delta >= R2more) & (adjRsq <= adjR2thresh)) {
mm <- mm+1
R2prev <- R2cum
R2cum <- 0
for(j in 1:m) {
if(X.out[j] != 0) {
toto <- simpleRDA2(Y,X[,c(res2,j)],SS.Y)
if(toto$Rsquare > R2cum) {
R2cum <- toto$Rsquare
no.sup <- j
}
}
}
FP <- FPval(R2cum,R2prev,n,mm,p)
delta <- R2cum-R2prev
adjRsq <- RsquareAdj(R2cum,n,mm)
res1 <- c(res1,var.names[no.sup])
res2 <- c(res2,no.sup)
res3 <- c(res3,delta)
res4 <- c(res4,R2cum)
res5 <- c(res5,adjRsq)
res6 <- c(res6,FP$Fstat)
res7 <- c(res7,FP$pval)
X.out[no.sup] <- 0
}
if(verbose) {
if(FP$pval > alpha) cat("Procedure stopped (alpha criterion): pvalue for variable ",no.sup," is ",FP$pval,'\n')
if(mm > K) cat("Procedure stopped (K criterion): mm = ",mm," is larger than ",K," after including variable ",no.sup,'\n')
if(R2cum > R2thresh) cat("Procedure stopped (R2thresh criterion): R2cum for variable ",no.sup," is ",R2cum,'\n')
if(delta < R2more) cat("Procedure stopped (R2more criterion): delta for variable ",no.sup," is ",delta,'\n')
if(adjRsq>adjR2thresh) cat("Procedure stopped (adjR2thresh criterion): adjRsq for variable ",no.sup," is ",adjRsq,'\n')
}
res <- data.frame(res1,res2,res3,res4,res5,res6,res7)
colnames(res) <- c("variable","order","R2","R2cum","AdjR2Cum","F","pval")
if((FP$pval > alpha) | (mm > K) | (R2cum > R2thresh) | (delta < R2more) | (adjRsq > adjR2thresh)) res <- res[1:(mm-1),]
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.