Description Usage Arguments Value Author(s) References See Also Examples
The function predict.parfm()
computes predictions of frailty values for objects of class parfm
.
1 2 |
object |
A parametric frailty model, object of class |
... |
see |
An object of class predict.parfm
.
Federico Rotolo [aut, cre], Marco Munda [aut], Andrea Callegaro [ctb]
Glidden D, Vittinghoff E (2004). Modelling Clustered Survival Data From Multicentre Clinical Trials. Statistics in medicine, 23(3), 369–388.
Munda M, Rotolo F, Legrand C (2012). parfm: Parametric Frailty Models in R. Journal of Statistical Software, 51(11), 1-20. DOI 10.18637/jss.v051.i11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | data(kidney)
kidney$sex <- kidney$sex - 1
model <- parfm(Surv(time,status) ~ sex + age,
cluster = "id", data = kidney,
dist = "exponential", frailty = "gamma")
u <- predict(model)
u
# Predictions from semi-parametric Gamma frailty model
# via coxph() function
model.coxph <- coxph(Surv(time,status) ~ sex + age +
frailty(id, frailty = "gamma", eps = 1e-11),
outer.max = 15, data = kidney)
u.coxph <- exp(model.coxph$frail)
# Plot of predictions from both models
par(mfrow = c(1,2))
ylim <- c(0, max(c(u, u.coxph)))
plot(u, sort = "i",
main = paste("Parametric",
"Gamma frailty model",
"with Exponential baseline",
sep = "\n"),
ylim = ylim)
names(u.coxph) <- kidney[seq(2,76, 2), "id"]
class(u.coxph) <- "predict.parfm"
attr(u.coxph, "clustname") <- "id"
plot(u.coxph, sort = "i",
main = paste("Semi-parametric",
"Gamma frailty model", sep = "\n"),
ylim = ylim)
|
Loading required package: survival
Loading required package: optimx
Gamma frailty model with Exponential baseline
id frailty
1 1.325
2 1.207
3 1.109
4 0.632
5 1.199
6 1.065
7 1.386
8 0.723
9 1.002
10 0.604
11 0.929
12 0.999
13 1.258
14 0.684
15 0.634
16 1.072
17 0.874
18 0.86
19 0.713
20 1.031
21 0.205
22 0.704
23 1.353
24 1.103
25 1.077
26 0.759
27 1.053
28 1.403
29 1.266
30 1.188
31 1.344
32 1.176
33 1.134
34 0.919
35 1.288
36 0.871
37 1.097
38 0.756
Warning message:
In coxpenal.fit(X, Y, strats, offset, init = init, control, weights = weights, :
Inner loop failed to coverge for iterations 3
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.