Nothing
NLF.LQL <- function (params.fitted, object, params, par.index, transform = FALSE,
times, t0, lags, period, tensor, seed = NULL,
transform.data = identity, nrbf = 4, verbose = FALSE,
bootstrap = FALSE, bootsamp = NULL) {
###>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
### Computes the vector of log quasi-likelihood values at the observations
### Note that the log QL itself is returned, not the negative log QL,
### so a large NEGATIVE value is used to flag bad parameters
###>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
transform <- as.logical(transform)
FAILED = -99999999999
params[par.index] <- params.fitted
if (transform)
params <- partrans(object,params,dir="fromEstimationScale")
## Evaluates the NLF objective function given a POMP object.
## Version 0.1, 3 Dec. 2007, Bruce E. Kendall & Stephen P. Ellner
## Version 0.2, May 2008, Stephen P. Ellner
data.ts <- obs(object)
y <- try(
simulate(object,times=times,t0=t0,params=params,seed=seed,obs=TRUE,states=FALSE),
silent=FALSE
)
if (inherits(y,"try-error"))
stop(sQuote("NLF.LQL")," reports: error in simulation")
## Test whether the model time series is valid
if (!all(is.finite(y))) return(FAILED)
model.ts <- array(
dim=c(nrow(data.ts),length(times)),
dimnames=list(rownames(data.ts),NULL)
)
model.ts[,] <- apply(y[,1,,drop=FALSE],c(2,3),transform.data)
data.ts[,] <- apply(data.ts,2,transform.data)
LQL <- try(
NLF.guts(
data.mat=data.ts,
data.times=time(object),
model.mat=model.ts,
model.times=times,
lags=lags,
period=period,
tensor=tensor,
nrbf=nrbf,
verbose=FALSE,
bootstrap,
bootsamp,
plotfit=FALSE
),
silent=FALSE
)
if (inherits(LQL,"try-error"))
stop(sQuote("NLF.LQL")," reports: error in ",sQuote("NLF.guts"))
LQL
}
nlf.objfun <- function (...)
-sum(NLF.LQL(...),na.rm=TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.