Nothing
##
## h u r s t . R Hurst Exponent
##
.hurstrs <- function(x) {
# half intervals of indices
half <- function(N) sort(c(N, N[-length(N)]+((diff(N)+1)%/%2)))
# define the R/S scale
rscalc <- function(x) {
n <- length(x); y <- cumsum(x - mean(x))
R <- diff(range(y)); S <- sd(x)
return(R/S)
}
# set initial values
X <- c(length(x))
Y <- c(rscalc(x))
N <- c(0, length(x) %/% 2, length(x))
# compute averaged R/S for halved intervals
while ( min(diff(N)) >= 8 ) {
xl <- c(); yl <- c()
for (i in 2:length(N)) {
rs <- rscalc(x[(N[i-1]+1):N[i]])
xl <- c(xl, N[i]-N[i-1])
yl <- c(yl, rs)
}
X <- c(X, mean(xl))
Y <- c(Y, mean(yl))
# next step
N <- half(N)
}
# apply linear regression
rs_lm <- lm(log(Y) ~ log(X))
return(unname(coefficients(rs_lm)[2]))
}
hurstexp <- function(x, d = 50, display = TRUE) {
stopifnot(is.numeric(x), is.numeric(d))
d <- max(2, floor(d[1]))
N <- length(x)
if (N %% 2 != 0) {
x <- c(x, (x[N-1] + x[N])/2)
N <- N + 1
}
# Calculate simple R/S
rssimple <- function(x){
n <- length(x)
y <- x - mean(x)
s <- cumsum(y)
rs <- (max(s) - min(s)) / sd(x)
log(rs) / log(n)
}
# Calculate empirical R/S
rscalc <- function(z, n) {
m <- length(z)/n
y <- matrix(x, n, m)
e <- apply(y, 2, mean)
s <- apply(y, 2, std)
for (i in 1:m) y[, i] <- y[, i] - e[i]
y <- apply(y, 2, cumsum)
mm <- apply(y, 2, max) - apply(y, 2, min)
return( mean(mm/s) )
}
divisors <- function(n, n0 = 2) {
n0n <- n0:floor(n/2)
dvs <- n0n[n %% n0n == 0]
return(dvs)
}
# Find the optimal vector d
N <- length(x); dmin <- d
N0 <- min(floor(0.99 * N), N-1)
N1 <- N0; dv <- divisors(N1, dmin)
for (i in (N0+1):N) {
dw <- divisors(i, dmin)
if (length(dw) > length(dv))
{N1 <- i; dv <- dw}
}
OptN <- N1; d <- dv
x <- x[1:OptN]
N <- length(d)
RSe <- ERS <- numeric(N)
for (i in 1:N)
RSe[i] <- rscalc(x, d[i])
# Compute corrected theoretical E(R/S)
for (i in 1:N) {
n <- d[i]
K <- c((n-1):1)/c(1:(n-1))
ratio <- (n-0.5)/n * sum(sqrt(K))
if (n > 340) ERS[i] <- ratio/sqrt(0.5*pi*n)
else ERS[i] <- (gamma(0.5*(n-1))*ratio) / (gamma(0.5*n)*sqrt(pi))
}
# Compute the Hurst exponent as the slope on a loglog scale
ERSal <- sqrt(0.5*pi*d)
Pal <- polyfit(log10(d), log10(RSe - ERS + ERSal), 1)
Hal <- Pal[1]
# Calculate the empirical and theoretical Hurst exponents
Pe <- polyfit(log10(d), log10(RSe), 1)
He <- Pe[1]
P <- polyfit(log10(d), log10(ERS), 1)
Ht <- P[1]
Hs <- rssimple(x)
Hrs <- .hurstrs(x)
if (display) {
cat("Simple R/S Hurst estimation: ", Hs, "\n")
cat("Corrected R over S Hurst exponent: ", Hrs, "\n")
cat("Empirical Hurst exponent: ", He, "\n")
cat("Corrected empirical Hurst exponent: ", Hal, "\n")
cat("Theoretical Hurst exponent: ", Ht, "\n")
invisible(list(Hs = Hs, Hrs = Hrs, He = He, Hal = Hal, Ht = Ht))
} else {
return(list(Hs = Hs, Hrs = Hrs, He = He, Hal = Hal, Ht = Ht))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.