R/integral2.R

Defines functions .nextEntry .save2list .tensor integral2

Documented in integral2

##
##  i n t e g r a l 2 . R  Double and Triple Integrals
##


integral2 <- function(fun, xmin, xmax, ymin, ymax, sector = FALSE,
                        reltol = 1e-6, abstol = 0, maxlist = 5000,
                        singular = FALSE, vectorized = TRUE, ...) {
    stopifnot(is.numeric(xmin), length(xmin) == 1,
              is.numeric(xmax), length(xmax) == 1)
    if ( is.infinite(xmin) || is.infinite(xmax) ||
        (!is.function(ymin) && is.infinite(ymin)) ||
        (!is.function(ymax) && is.infinite(ymax)) )
        stop("Borders of the integration domain cannot be infinite.")

    # check input parameters
    nlist <- floor(maxlist/10)

    # check function and vectorization
    fun <- match.fun(fun)
    if (sector) {
        # FUN <- function(theta, r) fun(r*cos(theta), r*sin(theta), ...) * r
        FUN <- function(x, y) fun(y*cos(x), y*sin(x), ...) * y
    } else {
        FUN <- function(x, y) fun(x, y, ...)
    }

    # check upper and lower bounds of y
    if (is.function(ymin)) {
        phiBvar <- ymin
    } else if (is.numeric(ymin)) {
        phiBvar <- function(x) ymin * ones(size(x)[1], size(x)[2])
    } else
        stop("Argument 'ymin' must be a constant or a (vectorized) function.")

    if (is.function(ymax)) {
        phiTvar <- ymax
    } else if (is.numeric(ymax)) {
        phiTvar <- function(x) ymax * ones(size(x)[1], size(x)[2])
    } else
        stop("Argument 'ymax' must be a constant or a (vectorized) function.")

    # check borders and redefine
    if (singular) {
        thetaL <- 0; thetaR <- pi
        phiB <- 0; phiT <- pi
    } else {
        thetaL <- xmin; thetaR <- xmax
        phiB <- 0; phiT <- 1
    }
    area <- (thetaR - thetaL) * (phiT - phiB)

    # initial quadrature
    Qs   <- .tensor(xmin, xmax, thetaL, thetaR, phiB, phiT, FUN, phiBvar, phiTvar,
                      vectorized = vectorized, singular = singular)
    Qsub <- Qs$qsub; esub <- Qs$esub
    Q    <- sum(Qsub)

    # some more parameters and main list
    eps <- .Machine$double.eps
    tol <- 100 * eps * abs(Q)
    err_ok <- 0
    adjust <- 1
    mainList <- zeros(nlist, 7)
    nList <- 0

    # save info on rectangles in main list
    s2l <- .save2list(mainList, nList, Qsub, esub, thetaL, thetaR, phiB, phiT,
                        tol, area, adjust, err_ok)
    mainList <- s2l$mlist
    nList    <- s2l$nlist
    errbnd   <- s2l$errbnd

    if (nList == 0 || errbnd <= tol)
        return(list(Q = Q, error = errbnd))

    while (TRUE) {
        ne <- .nextEntry(mainList, nList)
        mainList <- ne$mlist
        nList <- ne$nlist

        temp <- ne$entry
        q <- temp[1]; e <- temp[2]
        thetaL <- temp[3]; thetaR <- temp[4]
        phiB <- temp[5]; phiT <- temp[6]

        # Approximate integral over four subrectangles
        Qs <- .tensor(xmin, xmax, thetaL, thetaR, phiB, phiT, FUN, phiBvar, phiTvar,
                        vectorized = vectorized, singular = singular)
        Qsub <- Qs$qsub; esub <- Qs$esub

        newq <- sum(Qsub)
        adjust <- min(1, abs(q - newq)/e)
        Q <- Q + (newq - q)
        tol <- max(abstol, reltol * abs(Q)) / 8  
        tol <- max(tol, 100 * eps * abs(Q))

        s2l <- .save2list(mainList, nlist, Qsub, esub, thetaL, thetaR, phiB, phiT,
                            tol, area, adjust, err_ok)
        mainList <- s2l$mlist
        nList    <- s2l$nlist
        errbnd   <- s2l$errbnd

        if (nList == 0 || errbnd <= tol) {
            break
        } else if (nList > maxlist) {
            if (errbnd > max(abstol, max(100*eps, reltol) * abs(Q))) {
                stop("Maximum number of subintervals: w/o convergence.")
            } else {
                warning("Maximum number of subintervals: maybe low accuracy.")
            }
            break
        }
    }
    # accuracy or max. number of subdivisions rached
    return(list(Q = Q, error = errbnd))
}


.tensor <- function(a, b, thetaL, thetaR, phiB, phiT, FUN, phiBvar, phiTvar,
                        vectorized = vectorized, singular = singular)
{
    # Gauss-Kronrod (3,7) pair with degrees of precision 5 and 11
    nodes <- c( -0.9604912687080202, -0.7745966692414834, -0.4342437493468026,
                0, 0.4342437493468026, 0.7745966692414834, 0.9604912687080202) 
    nnodes <- length(nodes)    
    onevec <- ones(2*nnodes,1)
    narray <- 0.25 * cbind(nodes, nodes)
    wt3    <- c(0, 5/9, 0, 8/9, 0, 5/9, 0)
    wt7    <- c(0.1046562260264672, 0.2684880898683334, 0.4013974147759622,
                0.4509165386584744, 0.4013974147759622, 0.2684880898683334,
                0.1046562260264672)

    Qsub <- zeros(4,1)
    esub <- zeros(4,1)
    
    dtheta <- thetaR - thetaL
    etheta <- thetaL + dtheta * c(0.25,0.75)
    theta  <- c(dtheta*narray + rep(etheta, each = nnodes))
    if (singular) {
        x <- 0.5*(b + a) + 0.5*(b - a)*cos(theta)
    } else {
        x <- theta
    }
    X <- onevec %*% x

    dphi <- phiT - phiB;
    ephi <- phiB + dphi * c(0.25,0.75)
    phi  <- c(dphi*narray + rep(ephi, each = nnodes))
    phi  <- as.matrix(c(phi))

    top    <- phiTvar(x)
    bottom <- phiBvar(x)
    dydt <- top - bottom
    if (singular) {
        t <- 0.5 + 0.5*cos(phi)
    } else {
        t <- phi
    }
    Y <- onevec %*% bottom + t %*% dydt

    if (vectorized) {
        Z <- FUN(X, Y)
    } else {
        Z <- arrayfun(FUN, X, Y)
    }

    if (singular) {
        temp <- 0.25*(b - a) * sin(phi) %*% (dydt * sin(theta))
    } else {
        temp <- onevec %*% dydt
    }
    Z <- Z * temp

    # Tensor product: Gauss 3 and 7 points formulae
    esub[1] <- wt3 %*% t(wt3 %*% Z[1:nnodes,1:nnodes])
    esub[2] <- wt3 %*% t(wt3 %*% Z[1:nnodes,(nnodes+1):(2*nnodes)])  
    esub[3] <- wt3 %*% t(wt3 %*% Z[(nnodes+1):(2*nnodes),1:nnodes])
    esub[4] <- wt3 %*% t(wt3 %*% Z[(nnodes+1):(2*nnodes),(nnodes+1):(2*nnodes)])
    esub <- (esub/4)*(dtheta/2)*(dphi/2) 

    Qsub[1] <- wt7 %*% t(wt7 %*% Z[1:nnodes,1:nnodes])
    Qsub[2] <- wt7 %*% t(wt7 %*% Z[1:nnodes,(nnodes+1):(2*nnodes)])
    Qsub[3] <- wt7 %*% t(wt7 %*% Z[(nnodes+1):(2*nnodes),1:nnodes])
    Qsub[4] <- wt7 %*% t(wt7 %*% Z[(nnodes+1):(2*nnodes),(nnodes+1):(2*nnodes)])   

    Qsub <- (Qsub/4)*(dtheta/2)*(dphi/2);  
    esub <- abs(esub - Qsub);

    return(list(qsub = Qsub, esub = esub))
}


.save2list <- function(mainList, nList,
                      Qsub, esub, thetaL, thetaR, phiB, phiT,
                      tol, area, adjust, err_ok) {

    eps <- .Machine$double.eps
    dtheta <- thetaR - thetaL
    dphi <- phiT - phiB
    localtol <- tol * (dtheta/2) * (dphi/2) / area
    localtol <- max(localtol, 100*eps*abs(sum(Qsub)))

    adjerr <- adjust * esub
    if (nList+4 > size(mainList,1))
        mainList <- rbind(mainList, zeros(100, 7))
    
    if (adjerr[1] > localtol) {
        nList <- nList + 1
        mainList[nList, ] <- c(Qsub[1], esub[1], thetaL, thetaL + dtheta/2,
                                             phiB ,phiB + dphi/2, adjerr[1])
    } else {
      err_ok <- err_ok + adjerr[1]
    }

    if (adjerr[2] > localtol) {
      nList <- nList + 1
      mainList[nList, ] <- c(Qsub[2], esub[2], thetaL + dtheta/2, thetaR,
                                           phiB, phiB + dphi/2, adjerr[2])
    } else {
      err_ok <- err_ok + adjerr[2]
    }

    if (adjerr[3] > localtol) {
      nList <- nList + 1
      mainList[nList, ] <- c(Qsub[3], esub[3], thetaL, thetaL + dtheta/2,
                                           phiB + dphi/2, phiT, adjerr[3])
    } else {
      err_ok <- err_ok + adjerr[3]
    }

    if (adjerr[4] > localtol) {
      nList <- nList + 1
      mainList[nList, ] <- c(Qsub[4], esub[4], thetaL + dtheta/2, thetaR,
                                           phiB + dphi/2, phiT, adjerr[4])
    } else {
      err_ok <- err_ok + adjerr[4]
    }   
    
    errbnd <- err_ok + sum(mainList[, 7])
    return(list(mlist = mainList, nlist = nList, errbnd = errbnd))
}


.nextEntry <- function(mainList, nList) {
    indx <- which.max(abs(mainList[1:nList, 7]))
    temp <- mainList[ indx, ]
    mainList <- mainList[-indx, ]
    nList <- nList - 1
    return(list(mlist = mainList, nlist = nList, entry = temp))
}

#-- --------------------------------------------------------------------------

integral3 <- function (fun, xmin, xmax, ymin, ymax, zmin, zmax, 
                          reltol = 1e-06, ...) 
{
    fct <- match.fun(fun)
    fun <- function(x, y, z) fct(x, y, z, ...)

    if (is.function(ymin)) { yBvar <- ymin
    } else if (is.numeric(ymin)) {
        yBvar <- function(x) rep(ymin, length(x))
    } else {
        stop("Argument 'ymin' must be a constant or a function of x.")
    }
    if (is.function(ymax)) { yTvar <- ymax
    } else if (is.numeric(ymax)) {
        yTvar <- function(x) rep(ymax, length(x))
    } else {
        stop("Argument 'ymax' must be a constant or a function of x.")
    }
    if (is.function(zmin)) {zBvar <- zmin
    } else if (is.numeric(zmin)) {
        zBvar <- function(x, y) rep(zmin, length(y))
    } else {
        stop("Argument 'zmin' must be a constant or a function of x and y.")
    }
    if (is.function(zmax)) { zTvar <- zmax
    } else if (is.numeric(zmax)) {
        zTvar <- function(x, y) rep(zmax, length(y))
    } else {
        stop("Argument 'zmax' must be a constant or a function of x and y.")
    }

    fx <- function(x) {
        z1 <- function(y) zBvar(x, y)
        z2 <- function(y) zTvar(x, y)
        fyz <- function(y, z) fun(x, y, z)
        integral2(fyz, yBvar(x), yTvar(x), z1, z2, reltol = reltol)$Q
    }

    f <- Vectorize(fx)
    integrate(f, xmin, xmax, subdivisions = 300L, rel.tol = reltol)$value
}

Try the pracma package in your browser

Any scripts or data that you put into this service are public.

pracma documentation built on March 19, 2024, 3:05 a.m.