Nothing
interp1 <- function (x, y, xi = x,
method = c("linear", "constant", "nearest", "spline", "cubic"))
{
if (!is.vector(x, mode="numeric") || !is.vector(y, mode="numeric"))
stop("Arguments 'x' and 'y' must be numeric vectors.")
nx <- length(x)
if (length(y) != nx)
stop("Arguments 'x' and 'y' must be vectors of the same length.")
if (nx <= 1)
stop("Arguments 'x', 'y' must have at least a length >= 2.")
if (min(xi) < min(x) || max(xi) > max(x))
stop("Points 'xi' outside of range of argument 'x'.")
e <- try(method <- match.arg(method), silent = TRUE)
if(inherits(e, "try-error")) {
warning("Unknown method: will use 'linear' interpolation.")
method <- "linear"
}
if (is.unsorted(x)) { # necessary for method 'nearest'
warning("Points in argument in 'x' unsorted; will be sorted.")
o <- order(x)
x <- x[o]; y <- y[o]
}
if (any(duplicated(x)))
warning("There are duplicated values in 'x'; mean will be tried.")
if (method == "constant" || method == "linear") {
yi <- approx(x, y, xi, method = method)$y
} else if (method == "nearest") {
n <- length(x)
xx <- c(x[1], (x[2:n] + x[1:(n-1)])/2, x[n])
yy <- c(y, y[n])
yi <- approx(xx, yy, xi, method = "constant")$y
} else if (method == "spline") {
#spfun <- splinefun(x, y, method = "fmm"); yi <- spfun(xi)
yi <- .ml.spline(x, y, xi)
} else if (method == "cubic") {
yi<- pchip(x, y, xi)
} else
stop(paste("Method", method, "not yet implemented."))
return(yi)
}
#-- Moler's spline function --------------------------------
.ml.spline <- function(x, y, xi) {
x <- c(x); y <- c(y)
n <- length (x)
if (length(y) != n) stop("Arguments 'x', 'y' must have the same length.")
if (n < 3) stop("spline routine: requires at least 3 points")
# First derivatives
h <- diff(x)
delta <- diff(y)/h
d <- .ml.splineslopes(h, delta)
# Piecewise polynomial coefficients
cc <- (3*delta - 2*d[1:(n-1)] - d[2:n])/h
b <- (d[1:(n-1)] - 2*delta + d[2:n])/h^2
# Find subinterval indices k so that x(k) <= xi < x(k+1)
m <- length(xi)
k <- rep(1, m)
for (j in 2:(n-1))
k[x[j] <= xi] <- j
# Evaluate spline
s <- xi - x[k]
v <- y[k] + s*(d[k] + s*(cc[k] + s*b[k]))
return(v)
}
.ml.splineslopes <- function(h, delta) {
# Diagonals of tridiagonal system
n <- length(h)+1
a <- numeric(length(h))
b <- a; cc <- a; r <- a
a[1:(n-2)] <- h[2:(n-1)]
a[n-1] <- h[n-2] + h[n-1]
b[1] <- h[2]
b[2:(n-1)] <- 2*(h[2:(n-1)] + h[1:(n-2)])
b[n] <- h[n-2]
cc[1] <- h[1] + h[2]
cc[2:(n-1)] <- h[1:(n-2)]
# Right-hand side
r[1] <- ((h[1] + 2*cc[1]) * h[2]*delta[1] +
h[1]^2 * delta[2])/cc[1]
r[2:(n-1)] <- 3 * (h[2:(n-1)] * delta[1:(n-2)] +
h[1:(n-2)] * delta[2:(n-1)])
r[n] <- (h[n-1]^2 * delta[n-2] +
(2*a[n-1] + h[n-1]) * h[n-2] * delta[n-1])/a[n-1]
# Solve tridiagonal linear system
d <- .ml.tridisolve(a, b, cc, r)
return(d)
}
.ml.tridisolve <- function(a, b, cc, d) {
x <- d
n <- length(x)
for (j in 1:(n-1)) {
mu <- a[j]/b[j]
b[j+1] <- b[j+1] - mu*cc[j]
x[j+1] <- x[j+1] - mu*x[j]
}
x[n] <- x[n]/b[n]
for (j in (n-1):1)
x[j] <- (x[j]-cc[j]*x[j+1])/b[j]
return(x)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.