run.lpSolveAPI: run lpSolveAPI

Description Usage Arguments Author(s) Examples

Description

Run lpSolve::lp to solve a linear program: maximize coefficients * variables such that the constraints are verified.

Usage

1
run.lpSolveAPI(variables, coefficients, constraints)

Arguments

variables

List of variables from make.ids.

coefficients

Vector of objective function coefficients.

constraints

List of quadmod constraints.

Author(s)

Toby Dylan Hocking

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
data(good.bad.dist)
feat <- good.bad.dist$features
better <- good.bad.dist$better

## fit the linear max-margin comparison function to a set of
## pairs. good.bad.dist has features with 2 columns. The first
## column is x_i and the second column is x_i'. good.bad.dist has a
## vector better which gives y_i in {-1,0,1}, indicating which
## element of the pair is better: -1 means x_i is better, 1 means
## x_i' is better, and 0 means they are the same. The max margin
## comparison function is the solution to maximize_{mu,w} mu subject
## to mu < 1-|w(x_i'-x_i)|, for all i such that y_i=0, and for all
## other i, mu < -1 + w(x_i'-x_i)y_i. Translating this problem into
## standard form yields the following LP.

vars <- make.ids(margin=1, weight=1)

constraints <- list()
for(i in 1:nrow(feat)){
  if(better[i] == 0){
    right.side <- -1
    yi.vec <- c(-1,1)
  }else{
    right.side <- 1
    yi.vec <- better[i]
  }
  for(yi in yi.vec){
    const <- with(vars,{
      weight*(feat[i,2]-feat[i,1])*yi + margin*-1 >= right.side
    })
    constraints <- c(constraints,list(const))
  }
}

n.vars <- length(unlist(vars))
tolerance <- 1e-6
Dvec <- rep(tolerance, n.vars)
D <- diag(Dvec)
d <- rep(0, n.vars)
d[vars$margin] <- 1
qp <- run.quadprog(vars, D, d, constraints)
sol <- run.lpSolveAPI(vars, d, constraints)
for(v.name in names(vars)){
  stopifnot(max(abs(qp[[v.name]]-sol[[v.name]])) < tolerance)
}

fxdiff <- sol$weight*(feat[,2]-feat[,1])
thresh <- function(x)ifelse(x>1,1,ifelse(abs(x)<1,0,-1))
## check to make sure we have perfect prediction.
stopifnot(thresh(fxdiff) == better)
margin <- ifelse(better==0,{
  1-abs(fxdiff)
},{
  -1 + better * fxdiff
})
on.margin <- abs(margin - sol$margin)<tolerance
margin.points <- feat[on.margin,]
margin.better <- better[on.margin]
boundary <- ifelse(margin.better==0,{
  ifelse(margin.points[,2]>margin.points[,1], -1, 1)
},{
  ifelse(margin.better == 1, -1, 1)
})

boundary.x <- margin.points[,2]
boundary.y <- boundary.x + boundary/sol$weight
margin.df <- data.frame(margin.points,boundary.x,boundary.y)
point.df <- data.frame(feat,better=factor(better))
line.df <- data.frame(slope=1,intercept=c(-1,1)/sol$weight)

library(ggplot2)
p <- ggplot(,aes(X2,X1))+
  geom_point(aes(colour=better), data=point.df)+
coord_equal()+
geom_abline(aes(slope=slope,intercept=intercept),data=line.df)+
scale_colour_discrete("$y_i$")+
xlab("$x_i'$")+
ylab("$x_i$")+
geom_segment(aes(xend=boundary.x, yend=boundary.y), data=margin.df)

print(p)

quadmod documentation built on May 2, 2019, 4:39 p.m.