Description Usage Arguments Details Value Author(s) References See Also
These functions are used internally by package robKalman for the ACM filter
| 1 2 3 4 | .getcorrCovACM(S1, K,  Z, W=diag(nrow(Z)))
.ACMinitstep(a, S, ...) 
.ACMpredstep(x0, S0, F, Q, i, rob0, s0, ...)
.ACMcorrstep(y, x1, S1, Z, V, i, rob1, dum, psi, apsi, bpsi, cpsi, flag, ...)
 | 
| a | mean of the initial state | 
| S | initial state covariance (see below) | 
| Z | observation matrix (see below) | 
| V | observation error covariance (see below) | 
| F | innovation transition matrix (see below) | 
| Q | innovation covariance (see below) | 
| i | the time instance | 
| K | Kalman gain K_t | 
| W | weight matrix | 
| dum | dummy variable for compatibility with ... argument of calling function | 
| s0 | scale of nominal Gaussian component of additive noise | 
| S1 | prediction error covariance S_{t|t-1} of the ACM filter | 
| S0 | filter error covariance S_{t-1|t-1} of the ACM filter | 
| rob0 | not used here; included for compatibility reasons; set to  | 
| rob1 | used to pass on information recursively; here:  | 
| psi | influence function to be used (default: Hampel's ψ function, which is the only one available at the moment) | 
| a,b,c | tuning constants for Hampel's ψ-function, (default:  | 
| flag | character, if "weights" (default), use ψ(t)/t to calculate the weights; if "deriv", use ψ'(t) | 
| y | observation  | 
| x0 | (ACM)- filtered state x_{t-1|t-1} | 
| x1 | (ACM)- predicted state x_{t|t-1} | 
| ... | not used here; for compatibility with signatures of other "step"-functions | 
We work in the setup of the time-invariant, linear, Gaussian state space model (ti-l-G-SSM) with p dimensional states x_t and q dimensional observations y_t, with initial condition
x_0 ~ N_p(a,S),
state equation
x_t = F x_{t-1} + v_t, v_t ~ N_p(0,Q), t>=1,
observation equation
y_t = Z x_t + e_t, e_t ~ N_q(0,V), t>=1,
and where all random variable x_0, v_t, e_t are independent.
For notation, let us formulate the classical Kalman filter in this context:
(0) ininitial step
x_{0|0} = a
\code{ } with error covariance
S_{0|0} = Cov(x_0-x_{0|0}) = S
(1) prediction step
x_{t|t-1} = F x_{t-1|t-1}, t>=1
\code{ } with error covariance
S_{t|t-1} = Cov(x_t-x_{t|t-1}) = F S_{t-1|t-1} F' + Q
(2) correction step
x_{t|t} = x_{t|t-1} + K_t (y_t - Z x_{t|t-1}), t>=1
\code{ } for Kalman Gain
K_t = S_{t|t-1} Z' (Z S_{t|t-1} Z' + V )^-
\code{ } with error covariance
S_{t|t} = Cov(x_t-x_{t|t}) = S_{t|t-1} - K_t Z S_{t|t-1}
FURTHER DETAILS TO BE FILLED
.getcorrCovACM determines filter error covariance S_{t-1|t-1} of the ACM filter. 
.ACMinitstep  calculates x_{0|0}.  
.ACMpredstep  calculates the ACM-x_{t|t-1}.  
.ACMcorrstep  calculates the ACM-x_{t|t}.  
Peter Ruckdeschel Peter.Ruckdeschel@itwm.fraunhofer.de,
 
Bernhard Spangl bernhard.spangl@boku.ac.at,
Martin, R.D. (1979): Approximate Conditional-mean Type Smoothers and Interpolators.
Martin, R.D. (1981): Robust Methods for Time Series. 
Martin, R.D. and Thomson, D.J. (1982): Robust-resistent Spectrum Estimation. 
internalKalman, internalrLS, recFilter
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.