Description Details Setup Classes Methods Functions Acknowledgement Start-up-Banner Demos Author(s) References
robKalman provides routines for robust Kalman filtering. Currently, the ACM-filter and the rLS-Filter are provided.
| Package: | robKalman |
| Version: | 0.2.1 |
| Date: | 2009-03-18 |
| Depends: | R(>= 2.3.0), methods, graphics, startupmsg, dse1, dse2, MASS |
| Imports: | stats |
| LazyLoad: | yes |
| License: | LGPL-3 |
| URL: | http://distr.r-forge.r-project.org/ |
We work in the setup of the time-invariant, linear, Gaussian state space model (ti-l-G-SSM) with p dimensional states x_t and q dimensional observations y_t, with initial condition
x_0 ~ N_p(a,S),
state equation
x_t = F x_{t-1} + v_t, v_t ~ N_p(0,Q), t>=1,
observation equation
y_t = Z x_t + e_t, e_t ~ N_q(0,V), t>=1,
and where all random variable x_0, v_t, e_t are independent.
yet to be filled
yet to be filled
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | general recursive filters
+recursiveFilter
-KalmanFilter
-rLSFilter:
*rLS.AO.Filter
*rLS.IO.Filter
-ACMfilter
-mACMfilter
ACMfilter:
+ACMfilt
GM-estimators for AR models
+arGM
utilities:
+Euclidnorm,
+rcvmvnorm,
+Huberize,
+limitS
simulation of AO contaminated state space models
+simulateState,
+simulateObs,
|
We thank Paul Gilbert for their help in preparing this package.
You may suppress the start-up banner/message completely by setting options("StartupBanner"="off")
somewhere before loading this package by library or require in your R-code / R-session.
If option "StartupBanner" is not defined (default) or setting
options("StartupBanner"=NULL) or options("StartupBanner"="complete")
the complete start-up banner is displayed.
For any other value of option "StartupBanner" (i.e., not in c(NULL,"off","complete"))
only the version information is displayed.
The same can be achieved by wrapping the library or require call into
either suppressStartupMessages() or onlytypeStartupMessages(.,atypes="version").
As for general packageStartupMessage's, you may also suppress all
the start-up banner by wrapping the library or require
call into suppressPackageStartupMessages() from
startupmsg-version 0.5 on.
Demos are available — see demo(package="robKalman")
Peter Ruckdeschel (Maintainer) Peter.Ruckdeschel@itwm.fraunhofer.de,
Bernhard Spangl bernhard.spangl@boku.ac.at,
Martin, R.D. and Zeh, J.E. (1978): Generalized M-estimates for Autoregression Including Small-sample Efficiency Robustness
Martin, R.D. (1979): Approximate Conditional-mean Type Smoothers and Interpolators.
Martin, R.D. (1980): Robust Estimation of Autoregressive Models.
Martin, R.D. (1981): Robust Methods for Time Series
Martin, R.D. and Thomson, D.J. (1982): Robust-resistent Spectrum Estimation.
Ruckdeschel, P. (2001) Ans\"atze zur Robustifizierung des
Kalman Filters. Bayreuther Mathematische Schriften, Vol. 64.
Spangl, B. (2008): On Robust Spectral Density
Estimation. PhD Thesis at Technical University, Vienna.
Stockinger, N. and Dutter, R. (1987): Robust Time Series Analysis: A Survey.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.