Defines functions SoilTaxonomyDendrogram

Documented in SoilTaxonomyDendrogram

# this function only works when clustering Soil Taxonomy elements
# ideally sourced from fetchOSD()
SoilTaxonomyDendrogram <- function(spc, name='hzname', max.depth=150, n.depth.ticks=6, scaling.factor=0.015, cex.names=0.75, cex.id=0.75, axis.line.offset=-4, width=0.1, y.offset=0.5, cex.taxon.labels=0.66) {
	# convert relevant columns into factors
	spc$soilorder <- factor(spc$soilorder)
	spc$suborder <- factor(spc$suborder)
	spc$greatgroup <- factor(spc$greatgroup)
	spc$subgroup <- factor(spc$subgroup)
	# extract site attributes as data.frame
	s <- site(spc)
	# copy soil ID to row.names, so that they are preserved in the distance matrix
	row.names(s) <- s[[idname(spc)]]
	# compute distance matrix from first 4 levels of Soil Taxonomy
	s.dist <- daisy(s[, c('soilorder', 'suborder', 'greatgroup', 'subgroup')], metric='gower')
	s.hclust <- as.hclust(diana(s.dist))
	# convert to phylo class
	dend <- as.phylo(s.hclust)
	# determine best-possible locations for taxa names
	max.dist <- max(s.dist)
	taxa.lab.y.vect <- c(max.dist / 1.6666666, (max.dist / 1.6666666) + 0.12)
	# setup plot and add dendrogram
	plot(dend, cex=0.8, direction='up', y.lim=c(4,0), x.lim=c(0.5, length(spc)+1), show.tip.label=FALSE)
	# get the last plot geometry
	lastPP <- get("last_plot.phylo", envir = .PlotPhyloEnv)
	# vector of indices for plotting soil profiles below leaves of dendrogram
	new_order <- s.hclust$order
	# plot the profiles, in the ordering defined by the dendrogram
	# with a couple fudge factors to make them fit
	plot(spc, name=name, plot.order=new_order, max.depth=max.depth, n.depth.ticks=n.depth.ticks, scaling.factor=scaling.factor, cex.names=cex.names, cex.id=cex.id, axis.line.offset=axis.line.offset, width=width, y.offset=max(lastPP$yy) + y.offset, id.style='side', add=TRUE)
	# generate taxonomic labels and their positions under the dendrogram
	lab <- s[new_order, 'subgroup']
	unique.lab <- unique(lab)
	group.lengths <- rle(as.numeric(lab))$lengths
	lab.x.positions <- (cumsum(group.lengths) - (group.lengths / 2)) + 0.5
	lab.y.positions <- rep(taxa.lab.y.vect, length.out=length(unique.lab))
	# add labels-- note manual tweaking of y-coordinates
	text(lab.x.positions, lab.y.positions, unique.lab, cex=cex.taxon.labels, adj=0.5, font=3)
	# invisibly return some information form the original objects

Try the sharpshootR package in your browser

Any scripts or data that you put into this service are public.

sharpshootR documentation built on May 31, 2017, 2:05 a.m.