Description Usage Arguments Value Author(s) References See Also Examples
A permutation test for Moran's I statistic calculated by using nsim random permutations of x for the given spatial weighting scheme, to establish the rank of the observed statistic in relation to the nsim simulated values.
1 2 |
x |
a numeric vector the same length as the neighbours list in listw |
listw |
a |
nsim |
number of permutations |
zero.policy |
default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA |
alternative |
a character string specifying the alternative hypothesis, must be one of "greater" (default), or "less". |
na.action |
a function (default |
spChk |
should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use |
return_boot |
return an object of class |
adjust.n |
default TRUE, if FALSE the number of observations is not adjusted for no-neighbour observations, if TRUE, the number of observations is adjusted |
A list with class htest
and mc.sim
containing the following components:
statistic |
the value of the observed Moran's I. |
parameter |
the rank of the observed Moran's I. |
p.value |
the pseudo p-value of the test. |
alternative |
a character string describing the alternative hypothesis. |
method |
a character string giving the method used. |
data.name |
a character string giving the name(s) of the data, and the number of simulations. |
res |
nsim simulated values of statistic, final value is observed statistic |
Roger Bivand Roger.Bivand@nhh.no
Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion, p. 63-5.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | data(oldcol)
colw <- nb2listw(COL.nb, style="W")
nsim <- 99
set.seed(1234)
sim1 <- moran.mc(COL.OLD$CRIME, listw=colw, nsim=nsim)
sim1
mean(sim1$res[1:nsim])
var(sim1$res[1:nsim])
summary(sim1$res[1:nsim])
colold.lags <- nblag(COL.nb, 3)
set.seed(1234)
sim2 <- moran.mc(COL.OLD$CRIME, nb2listw(colold.lags[[2]],
style="W"), nsim=nsim)
summary(sim2$res[1:nsim])
sim3 <- moran.mc(COL.OLD$CRIME, nb2listw(colold.lags[[3]],
style="W"), nsim=nsim)
summary(sim3$res[1:nsim])
|
Loading required package: sp
Loading required package: Matrix
Monte-Carlo simulation of Moran I
data: COL.OLD$CRIME
weights: colw
number of simulations + 1: 100
statistic = 0.51095, observed rank = 100, p-value = 0.01
alternative hypothesis: greater
[1] -0.01735822
[1] 0.008938155
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.238206 -0.083268 -0.007406 -0.017358 0.039717 0.259444
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.18440 -0.06090 -0.01837 -0.01522 0.02860 0.23554
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.16812 -0.06701 -0.02035 -0.01733 0.02200 0.14342
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.