Description Usage Arguments Value Author(s) References See Also Examples
A permutation test for Moran's I statistic calculated by using nsim random permutations of x for the given spatial weighting scheme, to establish the rank of the observed statistic in relation to the nsim simulated values.
1 2  | 
x | 
 a numeric vector the same length as the neighbours list in listw  | 
listw | 
 a   | 
nsim | 
 number of permutations  | 
zero.policy | 
 default NULL, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA  | 
alternative | 
 a character string specifying the alternative hypothesis, must be one of "greater" (default), or "less".  | 
na.action | 
 a function (default   | 
spChk | 
 should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use   | 
return_boot | 
 return an object of class   | 
adjust.n | 
 default TRUE, if FALSE the number of observations is not adjusted for no-neighbour observations, if TRUE, the number of observations is adjusted  | 
A list with class htest and mc.sim containing the following components:
statistic | 
 the value of the observed Moran's I.  | 
parameter | 
 the rank of the observed Moran's I.  | 
p.value | 
 the pseudo p-value of the test.  | 
alternative | 
 a character string describing the alternative hypothesis.  | 
method | 
 a character string giving the method used.  | 
data.name | 
 a character string giving the name(s) of the data, and the number of simulations.  | 
res | 
 nsim simulated values of statistic, final value is observed statistic  | 
Roger Bivand Roger.Bivand@nhh.no
Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion, p. 63-5.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  | data(oldcol)
colw <- nb2listw(COL.nb, style="W")
nsim <- 99
set.seed(1234)
sim1 <- moran.mc(COL.OLD$CRIME, listw=colw, nsim=nsim)
sim1
mean(sim1$res[1:nsim])
var(sim1$res[1:nsim])
summary(sim1$res[1:nsim])
colold.lags <- nblag(COL.nb, 3)
set.seed(1234)
sim2 <- moran.mc(COL.OLD$CRIME, nb2listw(colold.lags[[2]],
 style="W"), nsim=nsim)
summary(sim2$res[1:nsim])
sim3 <- moran.mc(COL.OLD$CRIME, nb2listw(colold.lags[[3]],
 style="W"), nsim=nsim)
summary(sim3$res[1:nsim])
 | 
Loading required package: sp
Loading required package: Matrix
	Monte-Carlo simulation of Moran I
data:  COL.OLD$CRIME 
weights: colw  
number of simulations + 1: 100 
statistic = 0.51095, observed rank = 100, p-value = 0.01
alternative hypothesis: greater
[1] -0.01735822
[1] 0.008938155
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
-0.238206 -0.083268 -0.007406 -0.017358  0.039717  0.259444 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
-0.18440 -0.06090 -0.01837 -0.01522  0.02860  0.23554 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
-0.16812 -0.06701 -0.02035 -0.01733  0.02200  0.14342 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.