Nothing
##################
# summary.ssdeR
##################
summary.ssdeR <- function (object, ...)
{
k2 <- length(object$coefficients)
k1 <- length(object$firststage$estimate)
ko <- NCOL(model.matrix(object, "o"))
kt <- NCOL(model.matrix(object, "t"))
ks <- NCOL(model.matrix(object, "s"))
cf2 <- object$coefficients
cf1 <- object$firststage$estimate
mus <- as.vector(do.call("c", as.list(cf2[(ko+1):(k2)])))
rhos <- as.vector(do.call("c", as.list(cf1[(kt+ks+1):(k1)])))
cfo <- as.vector(do.call("c", as.list(cf2[1:ko]))) #; names(cfo) <- paste(names(cfo), "o", sep = "_")
cft <- as.vector(do.call("c", as.list(cf1[1:kt]))) #; names(cfs) <- paste(names(cfs), "t", sep = "_")
cfs <- as.vector(do.call("c", as.list(cf1[(kt+1):(kt+ks)]))) #; names(cfs) <- paste(names(cfs), "s", sep = "_")
seo <- sqrt(diag(object$vcov))
seo_covar <- seo[1:(ko)] #; names(seo_covar) <- paste(names(seo_covar), "o", sep = "_")
seo_mus <- seo[(ko+1):(k2)]
set <- sqrt(diag(object$firststage$vcov))
set_t <- set[1:(kt)] #; names(set_t) <- paste(names(set_t), "o", sep = "_")
set_s <- set[(kt+1):(kt + ks)] #; names(set_t) <- paste(names(set_t), "o", sep = "_")
set_rho <- set[(kt+ks+1):(k1)]
cf <- c(cft, cfs, cfo)
se <- c(set_t, set_s, seo_covar)
cf <- cbind(cf, se, cf/se, 2 * pnorm(-abs(cf/se)))
AP <- c(rhos, mus)
se <- c(set_rho, seo_mus)
AP <- cbind(AP, se, AP/se, 2 * pnorm(-abs(AP/se)))
listDF <- list(Parameters=cf, Auxiliaries=AP)
new_col_name <- c("Estimate", "Std. Error", "z value", "Pr(>|z|)")
listDF <- lapply(listDF, function(i){
colnames(i) <- new_col_name
i
})
cf <- listDF[[1]]
AP <- listDF[[2]]
if (length(object$coefficients)) {
cf <- list(treatment = cf[seq.int(length.out = kt), , drop = FALSE],
selection = cf[seq.int(length.out = ks) + kt, , drop = FALSE],
outcome = cf[seq.int(length.out = ko) + kt + ks, , drop = FALSE],
Aux.Param = AP[, , drop = FALSE])
}
else {
warning("\nNo Parameters found\n")
}
object$AIC <- AIC(object)
object$BIC <- AIC(object, k=sqrt(nObs(object)))
object$DF1 <- k2
object$DF2 <- k1
object$coefficients <- cf
object$fitted.values <- object$terms <- object$levels <- object$contrasts <- NULL
class(object) <- "summary.ssdeR"
object
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.