as.svrepdesign: Convert a survey design to use replicate weights

View source: R/surveyrep.R

as.svrepdesignR Documentation

Convert a survey design to use replicate weights


Creates a replicate-weights survey design object from a traditional strata/cluster survey design object. JK1 and JKn are jackknife methods, BRR is Balanced Repeated Replicates and Fay is Fay's modification of this, bootstrap is Canty and Davison's bootstrap, subbootstrap is Rao and Wu's (n-1) bootstrap, and mrbbootstrap is Preston's multistage rescaled bootstrap. With a svyimputationList object, the same replicate weights will be used for each imputation if the sampling weights are all the same and separate.replicates=FALSE.


## Default S3 method:
as.svrepdesign(design, type=c("auto", "JK1", "JKn", "BRR", "bootstrap",
   fay.rho = 0, fpc=NULL,fpctype=NULL,..., compress=TRUE, 
## S3 method for class 'svyimputationList'
as.svrepdesign(design, type=c("auto", "JK1", "JKn", "BRR", "bootstrap",
   fay.rho = 0, fpc=NULL,fpctype=NULL, separate.replicates=FALSE, ..., compress=TRUE, 



Object of class or svyimputationList. Must not have been post-stratified/raked/calibrated in R


Type of replicate weights. "auto" uses JKn for stratified, JK1 for unstratified designs


Tuning parameter for Fay's variance method

fpc, fpctype, ...

Passed to jk1weights, jknweights, brrweights, bootweights, subbootweights, or mrbweights.


Compute replicate weights separately for each design (useful for the bootstrap types, which are not deterministic


Use a compressed representation of the replicate weights matrix.


if TRUE, compute variances from sums of squares around the point estimate, rather than the mean of the replicates


Object of class


Canty AJ, Davison AC. (1999) Resampling-based variance estimation for labour force surveys. The Statistician 48:379-391

Judkins, D. (1990), "Fay's Method for Variance Estimation," Journal of Official Statistics, 6, 223-239.

Preston J. (2009) Rescaled bootstrap for stratified multistage sampling. Survey Methodology 35(2) 227-234

Rao JNK, Wu CFJ. Bootstrap inference for sample surveys. Proc Section on Survey Research Methodology. 1993 (866–871)

See Also

brrweights, svydesign, svrepdesign, bootweights, subbootweights, mrbweights


scddes<-svydesign(data=scd, prob=~1, id=~ambulance, strata=~ESA,
nest=TRUE, fpc=rep(5,6))
scdnofpc<-svydesign(data=scd, prob=~1, id=~ambulance, strata=~ESA,

# convert to BRR replicate weights
scd2brr <- as.svrepdesign(scdnofpc, type="BRR")
scd2fay <- as.svrepdesign(scdnofpc, type="Fay",fay.rho=0.3)
# convert to JKn weights 
scd2jkn <- as.svrepdesign(scdnofpc, type="JKn")

# convert to JKn weights with finite population correction
scd2jknf <- as.svrepdesign(scddes, type="JKn")

## with user-supplied hadamard matrix
scd2brr1 <- as.svrepdesign(scdnofpc, type="BRR", hadamard.matrix=paley(11))

svyratio(~alive, ~arrests, design=scd2brr)
svyratio(~alive, ~arrests, design=scd2brr1)
svyratio(~alive, ~arrests, design=scd2fay)
svyratio(~alive, ~arrests, design=scd2jkn)
svyratio(~alive, ~arrests, design=scd2jknf)

## one-stage cluster sample
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
## convert to JK1 jackknife
## convert to bootstrap
bclus1<-as.svrepdesign(dclus1,type="bootstrap", replicates=100)

svymean(~api00, dclus1)
svytotal(~enroll, dclus1)

svymean(~api00, rclus1)
svytotal(~enroll, rclus1)

svymean(~api00, bclus1)
svytotal(~enroll, bclus1)

dclus2<-svydesign(id = ~dnum + snum, fpc = ~fpc1 + fpc2, data = apiclus2)
mrbclus2<-as.svrepdesign(dclus2, type="mrb",replicates=100)
svytotal(~api00+stype, dclus2)
svytotal(~api00+stype, mrbclus2)

survey documentation built on July 16, 2024, 3 a.m.