Description Usage Arguments Details Value Note Author(s)
Predict return levels from Generalized Pareto Distribution models, or obtain the linear predictors.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | ## S3 method for class 'gpd'
predict(object, M = 1000, newdata = NULL, type = "return level", se.fit = FALSE,
ci.fit = FALSE, alpha = 0.05, unique. = TRUE,...)
## S3 method for class 'bgpd'
predict(object, M = 1000, newdata = NULL, type = "return level", se.fit = FALSE,
ci.fit = FALSE, alpha = 0.050, unique. = TRUE, all = FALSE, sumfun = NULL,...)
## S3 method for class 'bootgpd'
predict(object, M = 1000, newdata = NULL, type = "return level", se.fit = FALSE,
ci.fit = FALSE, alpha = 0.050, unique. = TRUE, all = FALSE, sumfun = NULL,...)
linearPredictors(object, newdata = NULL, se.fit = FALSE, ci.fit = FALSE, alpha = 0.050,
unique. = TRUE, ...)
## S3 method for class 'gpd'
linearPredictors(object, newdata = NULL, se.fit = FALSE, ci.fit = FALSE,
alpha = 0.05, unique. = TRUE, full.cov = FALSE,...)
## S3 method for class 'bgpd'
linearPredictors(object, newdata = NULL, se.fit = FALSE, ci.fit = FALSE,
alpha = 0.050, unique. = TRUE, all = FALSE, sumfun = NULL,...)
## S3 method for class 'bootgpd'
linearPredictors(object, newdata = NULL, se.fit = FALSE, ci.fit = FALSE, alpha = 0.050, unique. = TRUE, all = FALSE, sumfun = NULL,...)
## S3 method for class 'lp.gpd'
print(x, digits=3,...)
## S3 method for class 'lp.bgpd'
print(x, digits=3,...)
## S3 method for class 'lp.bootgpd'
print(x, digits=3,...)
## S3 method for class 'lp.gpd'
summary(object, digits=3,...)
## S3 method for class 'lp.bgpd'
summary(object, digits=3,...)
## S3 method for class 'lp.bootgpd'
summary(object, digits=3,...)
## S3 method for class 'lp.gpd'
plot(x, main=NULL, pch=1, ptcol=2, cex=.75, linecol=4, cicol=1, polycol=15,...)
## S3 method for class 'lp.bgpd'
plot(x, type="median", ...)
## S3 method for class 'lp.bootgpd'
plot(x, type="median", ...)
|
object |
An object of class |
newdata |
The new data that you want to make the prediction for. Defaults in
|
type |
For the predict methods, the type of prediction, either “return level” (or “rl”) or
“link” (or “lp”). Defaults to For the plot methods for simulation based estimation of underlying distributions i.e. objects derived from bgpd and bootgpd classes, whether to use the sample median |
se.fit |
Whether or not to return the standard error of the predicted value.
Defaults to |
ci.fit |
Whether or not to return a confidence interval for the predicted
value. Defaults to |
M |
The return level: units are number of observations. Defaults to |
alpha |
If |
unique. |
If |
all |
For the |
full.cov |
Should the full covariance matrix be returned as part of a |
sumfun |
For the |
x |
An object of class |
main, pch, ptcol, cex, linecol, cicol, polycol |
Further arguments to plot methods. |
digits |
Number of digits to show when printing objects. |
... |
Further arguments to methods. |
By default, return levels predicted from the unique values of the
linear predictors are returned. For the bootgpd
method,
estimates of confidence intervals are simply quantiles of the bootstrap sample. The bootgpd
method is just a wrapper for the bgpd
method.
A list with one entry for each value of M
.
At present, the confidence intervals returned for an object of class
gpd
are simple confidence intervals based on assumptions
of normality that are likely to be far from the truth in many cases.
A better approach would be to use profile likelihood, and we intend
to implement this method at a future date. Alternatively, the credible intervals returned by using Bayesian estimation and the predict method for class "bgpd" will tend to give a better representation of the asymmetry of the estimated intervals around the parameter point estimates.
Harry Southworth and Janet E. Heffernan
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.