Description Usage Arguments Details Author(s) See Also Examples
Estimate generalized Pareto distribution parameters over a range of values, using maximum (penalized) likelihood.
1 2 3 |
data |
The data vector to be modelled. |
umin |
The minimum threshold above which to esimate the parameters. |
umax |
The maximum threshold above which to esimate the parameters. |
nint |
The number of thresholds at which to perform the estimation. |
penalty |
The type of penalty to be used in the maximum penalized likelihood estimation. Should be either “gaussian” or “none”. Defaults to “gaussian”. |
priorParameters |
Parameters to be used for the penalty function.
See the help for |
alpha |
(1 - alpha)% confidence intervals will be plotted with the
point estimates. Defaults to |
xlab |
Label for the x-axis. |
ylab |
Label for the y-axis. |
main |
The main title. |
addNexcesses |
Annotate top axis with numbers of threshold excesses arising with the corresponding values of threshold on the bottom axis. |
... |
Arguments to |
This is Stuart Coles' gpd.fitrange
, as it appears in the
ismev
package, with some fairly minor changes. The function uses
gpd
internally and uses the default options for that function.
Note this function does not extend to assessing model fit when there are covariates included in the mdoel.
Stuart Coles, Janet E Heffernan, Harry Southworth
1 2 | par(mfrow=c(1,2))
gpdRangeFit(rain)
|
Loading required package: mvtnorm
Loading required package: ggplot2
Scale parameter
---------------
threshold phi lo hi
[1,] 0.000000 1.746263 1.7148245 1.777702
[2,] 1.833333 1.664680 1.5842499 1.745109
[3,] 3.666667 1.543931 1.3939124 1.693949
[4,] 5.500000 1.671849 1.4514755 1.892222
[5,] 7.333333 1.462617 1.1348385 1.790396
[6,] 9.166667 1.850673 1.4523096 2.249036
[7,] 11.000000 1.510240 0.9511203 2.069359
[8,] 12.833333 1.679563 0.9935579 2.365568
[9,] 14.666667 1.146136 0.2310322 2.061240
[10,] 16.500000 1.421912 0.3409299 2.502894
Shape parameter
---------------
threshold xi lo hi
[1,] 0.000000 0.12724094 1.031277e-01 0.15135416
[2,] 1.833333 0.09744960 6.983946e-02 0.12505974
[3,] 3.666667 0.09182598 5.982390e-02 0.12382806
[4,] 5.500000 0.05452630 2.074989e-02 0.08830271
[5,] 7.333333 0.06754958 2.820090e-02 0.10689826
[6,] 9.166667 0.02295371 -1.610288e-02 0.06201030
[7,] 11.000000 0.04653099 -7.229458e-05 0.09313428
[8,] 12.833333 0.03033252 -1.922972e-02 0.07989476
[9,] 14.666667 0.05911131 6.006673e-04 0.11762196
[10,] 16.500000 0.03937115 -2.244013e-02 0.10118242
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.