Nothing
# Class Definitions
# This source MUST be loaded first
# Class 'yuima.pars'
# parameter object included in 'yuima.model'
setClass("model.parameter",representation(all="character",
common="character",
diffusion="character",
drift="character",
jump="character",
measure="character",
# Insert parameters for starting conditions
xinit="character"
)
)
# Class 'yuima.model'
setClass("yuima.model",representation(drift="expression",
diffusion="list",
hurst="ANY",
jump.coeff="list",
#jump.coeff="expression",
measure="list",
measure.type="character",
parameter="model.parameter",
state.variable="character",
jump.variable="character",
time.variable="character",
noise.number="numeric",
equation.number="numeric",
dimension="numeric",
solve.variable="character",
# xinit="numeric",
xinit="expression",
J.flag="logical"
)
)
# Class 'carma.info'
setClass("carma.info",
representation(p="numeric",
q="numeric",
loc.par="character",
scale.par="character",
ar.par="character",
ma.par="character",
lin.par="character",
Carma.var="character",
Latent.var="character",
XinExpr="logical")
)
# Class 'yuima.carma'
setClass("yuima.carma",
representation(info="carma.info"),
contains="yuima.model")
# Class Compound Poisson
setClass("yuima.poisson", contains="yuima.model")
# Class 'yuima.data'
# we want yuimaS4 to use any class of data as input
# the original data will be stored in OrigData
# we convert these objects internally to "zoo" object
# in the future, we may want to use more flexible
# classes
setClass("yuima.data", representation(original.data = "ANY",
zoo.data = "ANY"
)
)
# Class 'yuima.sampling'
# sampling is now empty, but should give informations on the sampling
# type, rate, deltas, etc.
setClass("yuima.sampling", representation(Initial = "numeric",
Terminal = "numeric",
n = "numeric",
delta = "numeric",
grid = "ANY",
random = "ANY",
regular = "logical",
sdelta = "numeric",
sgrid = "ANY",
oindex = "ANY",
interpolation = "character"
)
)
# Class 'yuima.functional'
# functional model used in 'asymptotic term' procedure
setClass("yuima.functional", representation(F = "ANY",
f = "list",
xinit = "numeric",
e = "numeric"
)
)
# Class 'yuima'
# this is the principal class of yuima project. It may contain up to
# three slots for now: the data, the model and the sampling
setClass("yuima.characteristic", representation(equation.number = "numeric",
time.scale = "numeric"
)
)
setClass("yuima", representation(data = "yuima.data",
model = "yuima.model",
sampling = "yuima.sampling",
characteristic = "yuima.characteristic",
functional = "yuima.functional"
)
)
# Class yuima.carma.qmle
setClass("yuima.carma.qmle",representation(Incr.Lev = "ANY",
model = "yuima.carma",
logL.Incr = "ANY"
),
contains="mle"
)
setClass("yuima.qmle",representation(
model = "yuima.model"),
contains="mle"
)
setClass("yuima.CP.qmle",representation(Jump.times = "ANY",
Jump.values = "ANY",
X.values = "ANY",
model = "yuima.model",
threshold="ANY"),
contains="mle"
)
setClass("summary.yuima.carma.qmle",representation(MeanI = "ANY",
SdI = "ANY",
logLI = "ANY",
TypeI = "ANY",
NumbI = "ANY",
StatI ="ANY",
model = "yuima.carma",
Additional.Info = "ANY"),
contains="summary.mle"
)
setClass("summary.yuima.CP.qmle",
representation(NJ = "ANY",
MeanJ = "ANY",
SdJ = "ANY",
MeanT = "ANY",
Jump.times = "ANY",
Jump.values = "ANY",
X.values = "ANY",
model = "yuima.model",
threshold = "ANY"),
contains="summary.mle"
)
setClass("summary.yuima.qmle",
representation(
model = "yuima.model",
threshold = "ANY",
Additional.Info = "ANY"),
contains="summary.mle"
)
# The yuima.carma.qmle extends the S4 class "mle". It contains three slots: Estimated Levy,
# The description of the carma model and the mle.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.