R/AllClasses.R

# Class Definitions
# This source MUST be loaded first

# Class 'yuima.pars'

# parameter object included in 'yuima.model'
setClass("model.parameter",representation(all="character",
                                          common="character",
                                          diffusion="character",
                                          drift="character",
                                          jump="character",
                                          measure="character",
# Insert parameters for starting conditions
                                          xinit="character"
                                          )
         )

# Class 'yuima.model'
setClass("yuima.model",representation(drift="expression",
                                      diffusion="list",
                                      hurst="ANY",
                                      jump.coeff="list",
#jump.coeff="expression",
                                      measure="list",
                                      measure.type="character",
                                      parameter="model.parameter",
                                      state.variable="character",
                                      jump.variable="character",
                                      time.variable="character",
                                      noise.number="numeric",
                                      equation.number="numeric",
                                      dimension="numeric",
                                      solve.variable="character",
#                                       xinit="numeric",
                                      xinit="expression",
                                      J.flag="logical"
                                      )
         )

# Class 'carma.info'
setClass("carma.info",
         representation(p="numeric",
                        q="numeric",
                        loc.par="character",
                        scale.par="character",
                        ar.par="character",
                        ma.par="character",
                        lin.par="character",
                        Carma.var="character",
                        Latent.var="character",
                        XinExpr="logical")
         )

# Class 'yuima.carma'

setClass("yuima.carma",
         representation(info="carma.info"),
         contains="yuima.model")

# Class Compound Poisson
setClass("yuima.poisson", contains="yuima.model")


# Class 'yuima.data'

# we want yuimaS4 to use any class of data as input
# the original data will be stored in OrigData
# we convert these objects internally to "zoo" object
# in the future, we may want to use more flexible
# classes

setClass("yuima.data", representation(original.data = "ANY",
                                      zoo.data = "ANY"
                                      )
         )


# Class 'yuima.sampling'

# sampling is now empty, but should give informations on the sampling
# type, rate, deltas, etc.

setClass("yuima.sampling", representation(Initial  = "numeric",
										  Terminal = "numeric",
                                          n = "numeric",
										  delta    = "numeric",
										  grid     = "ANY",
										  random   = "ANY",
										  regular  = "logical",
										  sdelta   = "numeric",
										  sgrid    = "ANY",
										  oindex   = "ANY",
										  interpolation = "character"
                                          )
         )

# Class 'yuima.functional'

# functional model used in 'asymptotic term' procedure

setClass("yuima.functional", representation(F = "ANY",
                                          f = "list",
                                          xinit = "numeric",
                                          e = "numeric"
                                          )
         )


# Class 'yuima'

# this is the principal class of yuima project. It may contain up to
# three slots for now: the data, the model and the sampling

setClass("yuima.characteristic", representation(equation.number = "numeric",
                                                time.scale = "numeric"
                                                )
         )


setClass("yuima", representation(data = "yuima.data",
                                 model = "yuima.model",
                                 sampling = "yuima.sampling",
                                 characteristic = "yuima.characteristic",
								 functional = "yuima.functional"
                                 )
         )

# Class yuima.carma.qmle
setClass("yuima.carma.qmle",representation(Incr.Lev = "ANY",
                                           model = "yuima.carma",
                                           logL.Incr = "ANY"
                                           ),
                            contains="mle"
         )



setClass("yuima.qmle",representation(
model = "yuima.model"),
contains="mle"
)

setClass("yuima.CP.qmle",representation(Jump.times = "ANY",
Jump.values = "ANY",
X.values = "ANY",
model = "yuima.model",
threshold="ANY"),
contains="mle"
)

setClass("summary.yuima.carma.qmle",representation(MeanI = "ANY",
                                                   SdI = "ANY",
                                                   logLI = "ANY",
                                                   TypeI = "ANY",
                                                   NumbI = "ANY",
                                                   StatI ="ANY",
                                                   model = "yuima.carma",
                                                   Additional.Info = "ANY"),
contains="summary.mle"
)

setClass("summary.yuima.CP.qmle",
representation(NJ = "ANY",
MeanJ = "ANY",
SdJ = "ANY",
MeanT = "ANY",
Jump.times = "ANY",
Jump.values = "ANY",
X.values = "ANY",
model = "yuima.model",
threshold = "ANY"),
contains="summary.mle"
)


setClass("summary.yuima.qmle",
representation(
model = "yuima.model",
threshold = "ANY",
Additional.Info = "ANY"),
contains="summary.mle"
)



# The yuima.carma.qmle extends the S4 class "mle". It contains three slots: Estimated Levy,
# The description of the carma model and the mle.

Try the yuima package in your browser

Any scripts or data that you put into this service are public.

yuima documentation built on Nov. 14, 2022, 3:02 p.m.