Description Usage Arguments Value Examples
View source: R/GlobalFunctions.R
QC-metrics based on the peak calling are the fraction of usable reads in the peak regions (FRiP) (Landt et al., 2012), for which the function calls sharp- and broad-binding peaks to obtain two types: the FRiP_sharpsPeak and the FRiP_broadPeak. The function takes the number of called of peaks using an FDR of 0.01 and an evalue of 10 (Kharchenko et al., 2008). And count the number of peaks called when using the sharp- and broad-binding option.
getPeakCallingScores
1 2 3 | getPeakCallingScores(chip, input, chip.dataSelected, input.dataSelected,
annotationID = "hg19", tag.shift = 75, mc = 1, chrorder = NULL,
debug = FALSE)
|
chip |
data-structure with tag information for the ChIP (see readBamFile()) |
input |
data-structure with tag information for the Input (see readBamFile()) |
chip.dataSelected |
selected ChIP tags after running removeLocalTagAnomalies() which removes local tag anomalies |
input.dataSelected |
selected Input tags after running removeLocalTagAnomalies() which removes local tag anomalies |
annotationID |
String indicating the genome assembly (Default="hg19") |
tag.shift |
Integer containing the value of the tag shift, calculated by getCrossCorrelationScores(). Default=75 |
mc |
Integer, the number of CPUs for parallelization (default=1) |
chrorder |
chromosome order (default=NULL) |
debug |
Boolean, to enter debugging mode. Intermediate files are saved in working directory |
QCscoreList List with 6 QC-values
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | mc=4
finalTagShift=98
print("Cross-correlation for ChIP")
## Not run:
filepath=tempdir()
setwd(filepath)
data("chipSubset", package = "ChIC.data", envir = environment())
chipBam=chipSubset
data("inputSubset", package = "ChIC.data", envir = environment())
inputBam=inputSubset
## calculate binding characteristics
chip_binding.characteristics<-spp::get.binding.characteristics(
chipBam, srange=c(0,500), bin = 5, accept.all.tags = TRUE)
input_binding.characteristics<-spp::get.binding.characteristics(
inputBam, srange=c(0,500), bin = 5, accept.all.tags = TRUE)
##get chromosome information and order chip and input by it
chrl_final <- intersect(names(chipBam$tags), names(inputBam$tags))
chipBam$tags <- chipBam$tags[chrl_final]
chipBam$quality <- chipBam$quality[chrl_final]
inputBam$tags <- inputBam$tags[chrl_final]
inputBam$quality <- inputBam$quality[chrl_final]
##remove sigular positions with extremely high read counts with
##respect to the neighbourhood
selectedTags <- removeLocalTagAnomalies(chipBam, inputBam,
chip_binding.characteristics, input_binding.characteristics)
inputBamSelected <- selectedTags$input.dataSelected
chipBamSelected <- selectedTags$chip.dataSelected
##Finally run function
bindingScores <- getPeakCallingScores(chip = chipBam,
input = inputBam, chip.dataSelected = chipBamSelected,
input.dataSelected = inputBamSelected,
annotationID="hg19",
tag.shift = finalTagShift, mc = mc)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.