Description Usage Arguments Value Author(s) Examples
The first step is to standardize the data (with the Mfuzz
package). Then the function checks that these data are clusterizable or not
(use of [diptest::dip.test()] to determine whether the distribution is unimodal or
multimodal). Finally, it determines the "optimal" k by the Gap statistic
approach.
1 | checkClusterability(standards, b = 500)
|
standards |
a matrix or dataframe containing only the standardized mean intensities returned by the function [standardiseMeanIntensities()] |
b |
Parameter B of the function [gap_cluster()] |
a list of 2 elements: * dip_test: the result of the clusterability of the data * gap_cluster: the gap statistic obtained with the function [cluster::clusGap()].
Helene Borges
1 2 3 4 5 6 7 8 9 10 11 | utils::data(Exp1_R25_prot, package='DAPARdata')
obj <- Exp1_R25_prot[1:1000]
keepThat <- mvFilterGetIndices(obj, condition = 'WholeMatrix', threshold=ncol(obj))
obj <- mvFilterFromIndices(obj, keepThat)
averaged_means <- averageIntensities(obj)
only_means <- dplyr::select_if(averaged_means, is.numeric)
only_features <- dplyr::select_if(averaged_means, is.character)
means <- purrr::map(purrr::array_branch(as.matrix(only_means), 1),mean)
centered <- only_means - unlist(means)
centered_means <- dplyr::bind_cols(feature = dplyr::as_tibble(only_features), dplyr::as_tibble(centered))
checkClust <- checkClusterability(centered_means, b=100)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.