Description Usage Arguments Value Examples
impute
imputes missing values in a proteomics dataset.
1 2 |
se |
SummarizedExperiment,
Proteomics data (output from |
fun |
"bpca", "knn", "QRILC", "MLE", "MinDet",
"MinProb", "man", "min", "zero", "mixed" or "nbavg",
Function used for data imputation based on |
... |
Additional arguments for imputation functions as depicted in
|
An imputed SummarizedExperiment object.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | # Load example
data <- UbiLength
data <- data[data$Reverse != "+" & data$Potential.contaminant != "+",]
data_unique <- make_unique(data, "Gene.names", "Protein.IDs", delim = ";")
# Make SummarizedExperiment
columns <- grep("LFQ.", colnames(data_unique))
exp_design <- UbiLength_ExpDesign
se <- make_se(data_unique, columns, exp_design)
# Filter and normalize
filt <- filter_missval(se, thr = 0)
norm <- normalize_vsn(filt)
# Impute missing values using different functions
imputed_MinProb <- impute(norm, fun = "MinProb", q = 0.05)
imputed_QRILC <- impute(norm, fun = "QRILC")
imputed_knn <- impute(norm, fun = "knn", k = 10, rowmax = 0.9)
imputed_MLE <- impute(norm, fun = "MLE")
imputed_manual <- impute(norm, fun = "man", shift = 1.8, scale = 0.3)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.