Nothing
context("linear_mu")
test_that("the use of linear model for fitting mu works as expected", {
set.seed(1)
dds <- makeExampleDESeqDataSet(n=100, m=4, interceptMean=10, interceptSD=3,
dispMeanRel=function(x) 0.5, sizeFactors=c(.5,1,1,2))
dds <- estimateSizeFactors(dds)
dds1 <- estimateDispersionsGeneEst(dds, linearMu=FALSE)
dds2 <- estimateDispersionsGeneEst(dds, linearMu=TRUE)
mu1 <- assays(dds1)[["mu"]]
mu2 <- assays(dds2)[["mu"]]
#par(mfrow=c(2,2),mar=c(3,3,1,1))
#for (i in 1:4) {
#plot(mu1[,i], mu2[,i], xlab="", ylab="", log="xy")
#abline(0,1)
#}
cors <- diag(cor(mu1, mu2, use="complete"))
expect_true(all(cors > 1 - 1e-6))
#
dds2 <- estimateDispersionsFit(dds2, fitType="mean")
dds2 <- estimateDispersionsMAP(dds2)
dds2 <- nbinomWaldTest(dds2)
res <- results(dds2)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.