Nothing
context("outlier")
test_that("outlier filtering and replacement works as expected", {
# test filtering and replacement
set.seed(1)
dds <- makeExampleDESeqDataSet(n=100, m=12, dispMeanRel = function(x) 4/x + .5)
counts(dds)[1,] <- rep(0L, 12)
counts(dds)[2,] <- c(100000L, rep(10L, 11))
counts(dds)[3,] <- c(100000L, rep(0L, 11))
dds0 <- DESeq(dds, minReplicatesForReplace=Inf)
dds1 <- DESeq(dds, minReplicatesForReplace=6)
pval0 <- results(dds0)[1:3,"pvalue"]
pval <- results(dds1)[1:3,"pvalue"]
LFC0 <- results(dds0)[1:3,"log2FoldChange"]
LFC <- results(dds1)[1:3,"log2FoldChange"]
# filtered
expect_true(all(is.na(pval0)))
# not filtered
expect_true(all(!is.na(pval[2:3])))
# counts still the same
expect_true(all(counts(dds1)==counts(dds)))
# first is NA
expect_true(is.na(LFC[1]))
# replaced, reduced LFC
expect_true(abs(LFC[2]) < abs(LFC0[2]))
# replaced, LFC now zero
expect_true(LFC[3] == 0)
idx <- which(!mcols(dds1)$replace)
# the pvalue for those not replaced is equal
expect_equal(results(dds1)$pvalue[idx], results(dds0)$pvalue[idx])
# check that outlier filtering catches throughout range of mu
beta0 <- seq(from=1,to=16,length=100)
idx <- rep(rep(c(TRUE,FALSE),c(1,9)),10)
set.seed(1)
#par(mfrow=c(2,3))
for (disp0 in c(.01,.1)) {
for (m in c(10,20,80)) {
dds <- makeExampleDESeqDataSet(n=100, m=m, interceptMean=beta0, interceptSD=0,
dispMeanRel=function(x) disp0)
counts(dds)[idx,1] <- as.integer(1000 * 2^beta0[idx])
dds <- DESeq(dds, minReplicatesForReplace=Inf, quiet=TRUE, fitType="mean")
res <- results(dds)
cutoff <- qf(.99, 2, m-2)
outlierCooks <- assays(dds)[["cooks"]][idx,1] > cutoff
nonoutlierCooks <- mcols(dds)$maxCooks[!idx] < cutoff
expect_true(all(is.na(res$pvalue[idx])))
expect_true(all(outlierCooks))
expect_true(all(nonoutlierCooks))
col <- rep("black", 100)
col[idx] <- "blue"
#plot(2^beta0, mcols(dds)$maxCooks, col=col, log="xy",
# main=paste(m,"-",disp0), xlab="mean", ylab="cooks")
#abline(h=qf(.99,2,m-2))
}
}
dds <- makeExampleDESeqDataSet(n=100)
counts(dds)[1,1] <- 1000000L
dds <- DESeq(dds, test="LRT", reduced=~1, minReplicatesForReplace=6)
# test replace function
dds <- makeExampleDESeqDataSet(n=100,m=4)
expect_error(replaceOutliers(dds))
dds <- DESeq(dds)
expect_error(replaceOutliers(dds, minReplicates=2))
# check model matrix standard bug
set.seed(1)
dds <- makeExampleDESeqDataSet(n=100, m=20)
counts(dds)[1,] <- c(100000L, rep(0L, 19))
dds <- DESeq(dds, modelMatrixType="standard")
})
test_that("outlier filtering doesn't flag small counts", {
set.seed(1)
dds <- makeExampleDESeqDataSet(n=100, m=8, dispMeanRel=function(x) 0.01)
counts(dds)[1,] <- c(0L, 0L, 0L, 100L, 2100L, 2200L, 2300L, 2400L)
counts(dds)[2:3,1] <- 100000L
counts(dds)[4,] <- rep(0L, 8)
dds <- DESeq(dds, fitType="mean")
res <- results(dds)
expect_true(!is.na(res$pvalue[1]))
expect_true(all(is.na(res$pvalue[2:3])))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.