Nothing
best.trans.eQTLs = function(smpack, rhs, genechrnum, snpchrnum,
K = 20, targdirpref="tsco", batchsize=200, radius=2e6,
genequeryprefix="", snploadprefix="chr", snplocprefix="chr", geneannopk,
snpannopk, exFilter=function(x)x, smFilter=function(x)x,
geneApply=lapply, SSgen=GGBase::getSS) {
transScores.legacy( smpack=smpack, snpchr=paste( snploadprefix, snpchrnum, sep=""),
rhs=rhs, K=K,
targdirpref=targdirpref, chrnames=genechrnum,
gchrpref=genequeryprefix, schrpref=snplocprefix,
radius=radius, shortfac=10, wrapperEndo=smFilter,
geneannopk=geneannopk, snpannopk=snpannopk, SSgen=SSgen )
}
#meta.best.trans.eQTLs = function(smpackvec, rhslist, genechrnum, snpchrnum,
# K = 20, targdirpref="multtsco", batchsize=200, radius=2e6,
# genequeryprefix="", snploadprefix="chr", snplocprefix="chr", geneannopk,
# snpannopk, exFilterList=function(x)x, smFilterList=function(x)x,
# geneApply=lapply) {
# mtransScores( smpackvec, rhslist=rhslist, chrnames=genechrnum, snpchr=snpchrnum,
# targdirpref=targdirpref, geneApply=geneApply, geneannopk=geneannopk,
# snpannopk=snpannopk, radius=radius,
#
#mtransScores = function (smpackvec, snpchr = "chr1", rhslist, K = 20, targdirpref = "multtsco",
# geneApply = lapply, chrnames = paste("chr", as.character(1:22), sep=""),
# geneRanges = NULL, snpRanges = NULL, radius = 2e+06, renameChrs=NULL,
# batchsize=200, genegran=50, probesToKeep=NULL, shortfac=10, wrapperEndo=NULL,
# gchrpref=genequeryprefix, )
#{
##
## objective is a small-footprint accumulation of trans-eQTL tests
## summed over different cohorts
## smpackvec is a vector of lightweight smlSet package name
## snpchr is the chromosome for which SNPs will be tested
## rhslist is the right hand side of formula for snp.rhs.tests in snpTests
## K is the number of best features to be retained as we explore the transcriptome
##
##
# if (length(chrnames) < 2)
# stop("must have length(chrnames) >= 2")
# theCall = match.call()
##
## get an image of the expression+genotype data for SNP on specific chromosome snpchr
##
# smsl = lapply(smpackvec, function(x) getSS(x, paste(snploadprefix, snpchr, sep="")))
# smsl = lapply(1:length(smsl), function(z) exFilterList(z)) # essential for dealing with multiple cell types
# smsl = lapply(1:length(smsl), function(z) smFilterList(z))
#
# smsl = makeCommonSNPs(smsl) # could be optional
# names(smsl) = smpackvec
# sms = smsl[[1]]
# guniv = featureNames(sms) # universe of probes
# smanno = gsub(".db", "", annotation(sms))
# clcnames = gsub("chr", "", chrnames) # typical chrom nomenclature of bioconductor
# pnameList = mget(clcnames, revmap(get(paste(smanno, "CHR",
# sep = ""))))
# # be sure to use only genes that are on arrays in sms
# pnameList = lapply(pnameList, function(x) intersect(x, guniv))
# names(pnameList) = chrnames # now the universe of probes is split into chromsomes
# todrop = which(sapply(pnameList, length)==0)
# if (length(todrop)>0) pnameList = pnameList[-todrop]
# genemap = lapply(pnameList, function(x) match(x, guniv)) # numerical indices for probes
# nchr_genes = length(names(pnameList))
# targdir = paste(targdirpref, snpchr, sep="")
# cursmsl = lapply(smsl, function(x) x[probeId(pnameList[[chrnames[1]]]),])
# inimgr = meqtlTests(cursmsl, # start the sifting through transcriptome
# rhslist, targdir = targdir, runname = paste("tsc_", chrnames[1], # testing on genes in chrom 1
# sep = ""), geneApply = geneApply, shortfac=shortfac)
# rm(cursmsl); gc()
# # build the map for current snpchr
# mapobj = getCisMap( radius = radius, gchr = paste(gchrpref, chrnames[j], sep=""),
# schr = paste(schrpref, snpchr, sep=""), geneannopk=geneannopk, snpannopk = snpannopk )
## from transScores
# if (snpchr == chrnames[1]) {
# cisZero(inimgr, mapobj@snplocs, mapobj@generanges, radius=0) # if SNP are on chrom 1, exclude cis
# # the gene ranges supplied are already augmented by radius
# }
#
# topKinds = topKfeats(inimgr, K = K, fn = paste(targdir, "/", # sort and save
# snpchr, "_tsinds1_1.ff", sep = ""), feat = "geneind",
# ginds = genemap[[1]], batchsize=batchsize)
# topKscores = topKfeats(inimgr, K = K, fn = paste(targdir,
# "/", snpchr, "_tssco1_1.ff", sep = ""), feat = "score",
# ginds = genemap[[1]], batchsize=batchsize)
# unlink(filename(inimgr@fflist[[1]]))
# for (j in 2:nchr_genes) { # continue sifting through transcriptome
# cat(j)
# gc()
# cursmsl = lapply(smsl, function(x) x[probeId(pnameList[[chrnames[j]]]),])
# nxtmgr = meqtlTests(cursmsl, rhslist, targdir = targdir,
# runname = paste("tsctmp",
# j, sep = ""), geneApply = geneApply, shortfac=shortfac)
# rm(cursmsl); gc()
# if (snpchr == chrnames[j]) {
# if (is.null(geneRanges) || is.null(snpRanges))
# stop("ranges must be supplied to exclude cis tests")
# cisZero(nxtmgr, snpRanges, geneRanges, radius)
# }
# nxtKinds = topKfeats(nxtmgr, K = K, fn = paste(targdir,
# "indscratch.ff", sep = ""), feat = "geneind", ginds = genemap[[j]], batchsize=batchsize)
# nxtKscores = topKfeats(nxtmgr, K = K, fn = paste(targdir,
# "scoscratch.ff", sep = ""), feat = "score", ginds = genemap[[j]], batchsize=batchsize)
# updateKfeats(topKscores, nxtKscores, topKinds, nxtKinds, batchsize=batchsize)
# unlink(filename(nxtmgr@fflist[[1]])) # kill off scratch materials
# unlink(paste(targdir, "indscratch.ff", sep = ""))
# unlink(paste(targdir, "scoscratch.ff", sep = ""))
# }
#
# baseout = list(scores = topKscores, inds = topKinds, guniv = guniv, K=K, snpchr=snpchr,
# chrnames=chrnames,
# smsanno = annotation(sms),
# snpnames = rownames(inimgr@fffile), call = theCall, date=date(), shortfac=shortfac)
# new("transManager", base=baseout)
#}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.