Nothing
summary.GGInetwork <- function(object, ...){
op <- options()
options(scipen=-3,digits=2)
cat("Gene-gene interaction network of ",ncol(object$p.value)," genes performed with:\n \t",object$method,"\n" )
nn <- row.names(object$p.value)
pval.none <- unlist(sapply(seq_len(length(nn)-1),FUN=function(i){object$p.value[i,(i+1):ncol(object$p.value)]}))
# pval.none <- unlist(vapply(seq_len(length(nn)-1),FUN=function(i){object$p.value[i,(i+1):ncol(object$p.value)]},FUN.VALUE=0))
pval <- data.frame(
G1=unlist(sapply(seq_len(length(nn)-1),FUN=function(i){rep(nn[i],times=(length(nn)-i))})),
# G1=unlist(vapply(seq_len(length(nn)-1),FUN=function(i){rep(nn[i],times=(length(nn)-i))},FUN.VALUE=0)),
G2=unlist(sapply(seq_len(length(nn)-1),FUN=function(i){nn[(i+1):length(nn)]})
# G2=unlist(vapply(seq_len(length(nn)-1),FUN=function(i){nn[(i+1):length(nn)]},FUN.VALUE=0)
),
None=pval.none,
bonferroni=p.adjust(pval.none,method="bonferroni"),
BH=p.adjust(pval.none,method="BH")
)
w <- which(pval$None < 0.05)
if (length(w)){
tmp.df <- pval[w,c(1,2,3)]
tmp.df <- tmp.df[order(tmp.df[,3]),]
row.names(tmp.df) <- NULL
names(tmp.df) <- c("Gene1","Gene2","Uncorrected p-value")
cat("\nSignificant interaction with no correction at the level of 0.05 \n-------\n")
print(tmp.df)
} else{
cat("\nNo significant interaction (at the level of 0.05) with no correction\n")
}
w <- which(pval$bonferroni < 0.05)
if (length(w) > 0){
tmp.df <- pval[w,c(1,2,4)]
tmp.df <- tmp.df[order(tmp.df[,3]),]
row.names(tmp.df) <- NULL
names(tmp.df) <- c("Gene1","Gene2","Bonferroni p-value")
cat("\nSignificant interaction with a Bonferroni correction at the level of 0.05 \n-------\n")
print(tmp.df)
} else {
cat("\nNo significant interaction (at the level of 0.05) with a Bonferroni correction\n")
}
w <- which(pval$BH < 0.05)
if (length(w) > 0){
tmp.df <- pval[w,c(1,2,5)]
tmp.df <- tmp.df[order(tmp.df[,3]),]
row.names(tmp.df) <- NULL
names(tmp.df) <- c("Gene1","Gene2","BH p-value")
cat("\nSignificant interaction with a Benjamini & Hochberg correction at the level of 0.05 \n-------\n")
print(tmp.df)
} else {
cat("\nNo significant interaction (at the level of 0.05) with a Benjamini & Hochberg correction\n")
}
options(scipen=op$scipen,digits=op$digits)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.