Description Usage Arguments Details Value Author(s) References Examples
Calculating FDR, FNDR, FPR, and FNR for a real microarray data set based on the mixture of marginal distributions.
1 | errRates(obj.gsMMD)
|
obj.gsMMD |
an object returned by |
We first fit the real microarray data set by the mixture of marginal distributions. Then we calculate the error rates based on the posterior distributions of a gene belonging to a gene cluster given its gene profiles. Please refer to Formula (7) on the page 6 of the paper listed in the Reference section.
A vector of 4 elements:
FDR |
the percentage of nondifferentially expressed genes among selected genes. |
FNDR |
the percentage of differentially expressed genes among unselected genes. |
FPR |
the percentage of selected genes among nondifferentially expressed genes |
FNR |
the percentage of un-selected genes among differentially expressed genes |
Jarrett Morrow remdj@channing.harvard.edu, Weiliang Qiu Weiliang.Qiu@gmail.com, Wenqing He whe@stats.uwo.ca, Xiaogang Wang stevenw@mathstat.yorku.ca, Ross Lazarus ross.lazarus@channing.harvard.edu
Qiu, W.-L., He, W., Wang, X.-G. and Lazarus, R. (2008). A Marginal Mixture Model for Selecting Differentially Expressed Genes across Two Types of Tissue Samples. The International Journal of Biostatistics. 4(1):Article 20. http://www.bepress.com/ijb/vol4/iss1/20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## Not run:
library(ALL)
data(ALL)
eSet1 <- ALL[1:100, ALL$BT == "B3" | ALL$BT == "T2"]
mem.str <- as.character(eSet1$BT)
nSubjects <- length(mem.str)
memSubjects <- rep(0,nSubjects)
# B3 coded as 0, T2 coded as 1
memSubjects[mem.str == "T2"] <- 1
obj.gsMMD <- gsMMD(eSet1, memSubjects, transformFlag = TRUE,
transformMethod = "boxcox", scaleFlag = TRUE, quiet = FALSE)
round(errRates(obj.gsMMD), 3)
## End(Not run)
|
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: ‘BiocGenerics’
The following objects are masked from ‘package:parallel’:
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from ‘package:stats’:
IQR, mad, sd, var, xtabs
The following objects are masked from ‘package:base’:
anyDuplicated, append, as.data.frame, basename, cbind, colnames,
dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
union, unique, unsplit, which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
Programming is running. Please be patient...
Data transformation ( boxcox ) performed
Gene profiles are scaled so that they have mean zero and variance one!
Programming is running. Please be patient...
******** initial parameter estimates method>> Ttest *******
paraIniMatRP[,i]>>
pi.1 pi.2 mu.c1 tau.c1 r.c1 delta.n1 tau.n1 r.n1
0.050 0.870 0.556 -0.505 -2.599 -0.056 -0.058 -3.026
mu.2 tau.2 r.2 mu.c3 tau.c3 r.c3 delta.n3 tau.n3
-0.002 0.008 -3.565 -0.659 -0.667 -1.678 0.093 -0.224
r.n3
-2.541
********** loop=
[1] 0
********** loop=
[1] 1
********** loop=
[1] 2
********** loop=
[1] 3
Total iterations for EM algorithm= 3
llkhVec>>
Ttest
-1615.003
*******************************************************
Initial parameter estimates>>
Ttest
pi.1 0.050
pi.2 0.870
pi.3 0.080
mu.c1 0.556
sigma2.c1 0.604
rho.c1 0.003
mu.n1 -0.389
sigma2.n1 0.944
rho.n1 0.001
mu.2 -0.002
sigma2.2 1.008
rho.2 0.000
mu.c3 -0.659
sigma2.c3 0.513
rho.c3 0.097
mu.n3 0.439
sigma2.n3 0.799
rho.n3 0.029
Initial loglikelihood>>
Ttest
-1774.942
Final loglikelihood based on initial estimates>>
Ttest
-1615.003
Final parameter estimates>>
pi.1 pi.2 pi.3 mu.c1 sigma2.c1 rho.c1 mu.n1 sigma2.n1
0.056 0.896 0.048 0.557 0.559 -0.069 -0.390 0.903
rho.n1 mu.2 sigma2.2 rho.2 mu.c3 sigma2.c3 rho.c3 mu.n3
-0.047 -0.002 0.981 -0.027 -0.841 0.282 0.036 0.569
sigma2.n3 rho.n3
0.616 -0.039
Final loglikelihood>>
Ttest
-1615.003
*******************************************************
FDR FNDR FPR FNR
0.027 0.000 0.003 0.000
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.