Description Usage Arguments Value Author(s) See Also Examples
View source: R/DataUtilities.R
Finalize a HIBAG model by removing unused SNP predictors and adding appendix information (platform, training set, authors, warning, etc)
1 2 |
mobj |
an object of |
platform |
the text of platform information |
information |
the other information, like authors |
warning |
any warning message |
rm.unused.snp |
if |
anonymize |
if |
verbose |
if TRUE, show information |
Returns a new object of hlaAttrBagObj
.
Xiuwen Zheng
hlaModelFromObj
, hlaModelToObj
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | # make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")
# training genotypes
region <- 250 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
hla.id, region*1000, assembly="hg19")
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
samp.sel = match(hla$value$sample.id, HapMap_CEU_Geno$sample.id))
#
# train a HIBAG model
#
set.seed(1000)
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, train.geno, nclassifier=2, verbose.detail=TRUE)
summary(model)
length(model$snp.id)
mobj <- hlaPublish(model,
platform = "Illumina 1M Duo",
information = "Training set -- HapMap Phase II")
model2 <- hlaModelFromObj(mobj)
length(mobj$snp.id)
mobj$appendix
summary(mobj)
p1 <- hlaPredict(model, train.geno)
p2 <- hlaPredict(model2, train.geno)
# check
cbind(p1$value, p2$value)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.