Description Usage Arguments Value Author(s) See Also Examples
View source: R/DataUtilities.R
Create figures for evaluating prediction accuracies.
1 2 3 |
PredHLA |
NULL, an object of |
TrueHLA |
NULL, an object of |
model |
NULL, or a model of |
fig |
"matching": violin plot for matching measurements; "call.rate": relationship between accuracy and call rate; "call.threshold": relationship between accuracy and call threshold |
match.threshold |
the threshold for matching proportion |
log_scale |
if TRUE, use log scale for matching violin plot |
Return a ggplot2 object.
Xiuwen Zheng
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | # make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")
# divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
# "training" "validation"
summary(hlatab$training)
summary(hlatab$validation)
# SNP predictors within the flanking region on each side
region <- 500 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
hla.id, region*1000, assembly="hg19")
length(snpid) # 275
# training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
samp.sel = match(hlatab$training$value$sample.id,
HapMap_CEU_Geno$sample.id))
test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
samp.sel=match(hlatab$validation$value$sample.id,
HapMap_CEU_Geno$sample.id))
# train a HIBAG model
set.seed(100)
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=4,
verbose.detail=TRUE)
summary(model)
# validation
pred <- hlaPredict(model, test.geno)
# visualize
hlaReportPlot(pred, fig="matching")
hlaReportPlot(model=model, fig="matching")
hlaReportPlot(pred, model=model, fig="matching")
hlaReportPlot(pred, hlatab$validation, fig="call.rate")
hlaReportPlot(pred, hlatab$validation, fig="call.threshold")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.