Nothing
row.kruskal.wallis <-
function(Y,grplbl)
{
ngenes<-dim(Y)[1]
ugrps<-unique(grplbl)
ngrps<-length(ugrps) #number of groups
T.mtx<-matrix(NA,ngenes,ngrps) # will store average rank for each group for each gene
n<-rep(NA,ngrps) # sample size for each group
tR<-apply(Y,1,rank)
Yrank<-t(tR)
for (i in 1:ngrps) # compute sample size & average rank for each group
{
grp.mtch<-(grplbl==ugrps[i])
n[i]<-sum(grp.mtch)
T.mtx[,i]<-rowMeans(Yrank[,grp.mtch])
}
N<-sum(n)
k<-12/(N*(N+1))
H.stat<-k*(T.mtx-(N+1)/2)^2%*%n
pval<-1-pchisq(H.stat,ngrps-1)
gren.res<-grenander.ebp(unlist(pval))
res<-cbind.data.frame(stat=H.stat,pval=pval,ebp=gren.res$ebp)
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.