Nothing
row.oneway.anova <-
function(Y,grplbl)
{
ugrps<-unique(grplbl)
ngrps<-length(ugrps) #number of groups
ngenes<-dim(Y)[1]
GrandM<-rowMeans(Y) # overall mean
SST<-rowSums((Y-GrandM)^2) # total sum of squares for each gene
grp.mean<-matrix(NA,ngenes,ngrps) # group mean matrix, rows for genes, each column for a different group
grp.SSW<-matrix(NA,ngenes,ngrps) # within-group sums of squares for each gene
n<-rep(NA,ngrps) # vector with group-specific sample sizes
for (i in 1:ngrps)
{
grp.mtch<-(grplbl==ugrps[i])
n[i]<-sum(grp.mtch)
grp.mean[,i]<-rowMeans(Y[,grp.mtch])
grp.SSW[,i]<-rowSums((Y[,grp.mtch]-grp.mean[,i])^2)
}
df1<-(ngrps-1)
df2<-sum(n)-df1-1
SSW<-rowSums(grp.SSW)
SSB<-SST-SSW
MSE<-SSW/df2
MSB<-SSB/df1
F.stat<-MSB/MSE
pval<-1-pf(F.stat,df1,df2)
ebp<-grenander.ebp(unlist(pval))
res<-cbind.data.frame(stat=F.stat,pval=pval,ebp=ebp$ebp)
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.