Description Usage Arguments Value Examples
ClusteringScatterPlot function enables visualizing the clustering over nonliner dimensionality reduction (t-SNE or UMAP).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ClusteringScatterPlot.SingleCellExperiment(
object,
clustering.type,
return.plot,
dim.reduction.type,
point.size,
title,
show.legend
)
## S4 method for signature 'SingleCellExperiment'
ClusteringScatterPlot(
object,
clustering.type = "manual",
return.plot = FALSE,
dim.reduction.type = "",
point.size = 0.7,
title = "",
show.legend = TRUE
)
|
object |
of |
clustering.type |
"manual" or "optimal". "manual" refers to the clustering formed using the "SelectKClusters" function and "optimal" to the clustering formed using the "CalcSilhInfo" function. Default is "manual". |
return.plot |
a logical denoting whether to return the ggplot2 object.
Default is |
dim.reduction.type |
"tsne" or "umap". Default is "tsne". |
point.size |
point size. Default is Default is |
title |
text to write above the plot |
show.legend |
whether to show the legend on the right side of the plot.
Default is |
ggplot2 object if return.plot=TRUE
1 2 3 4 5 6 7 8 9 10 11 12 | library(SingleCellExperiment)
sce <- SingleCellExperiment(assays = list(logcounts = pbmc3k_500))
sce <- PrepareILoReg(sce)
## These settings are just to accelerate the example, use the defaults.
sce <- RunParallelICP(sce,L=2,threads=1,C=0.1,k=5,r=1)
sce <- RunPCA(sce,p=5)
sce <- HierarchicalClustering(sce)
sce <- SelectKClusters(sce,K=5)
sce <- RunTSNE(sce)
ClusteringScatterPlot(sce,"manual",dim.reduction.type="tsne")
sce <- RunUMAP(sce)
ClusteringScatterPlot(sce,"manual",dim.reduction.type="umap")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.